
ChatGPT Emacs Integration Course

Tony Aldon

August 14, 2025

Abstract

Hi there! I’m Tony Aldon a passionate Emacs and AI enthusiast.

If you want to learn how to build a ChatGPT client for Emacs
integrating the OpenAI API, this course is for you!

https://tonyaldon.com/chatgpt-emacs-integration-course/

Through 18 engaging lessons, 2.5 hours video content and a de-
tailed PDF companion you’ll learn how to build a fully functional
Emacs package from scratch and you’ll know how to use the OpenAI
API.

It can help if you know a little bit of Emacs Lisp, but this is not a
requirement as we’ll meticulously write, review, and comment on
each line of code.

In this course, we’ll build chatgpt.el, a package that lets you send
prompts to ChatGPT directly from Emacs using the OpenAI API. Simply
call the chatgpt command, enter your prompt in the dedicated buffer, press
C-c C-c, and receive your response in an appended buffer seamlessly.

Beyond its simplicity, chatgpt.el offers these key features:

• Secure API Key Handling: Automatically retrieves your OpenAI
API key from ~/.authinfo.gpg for secure storage or from the plaintext
~/.authinfo file.

• Prompt History: Keeps track of your previous prompts, allowing
you to navigate back and forth through your request history using M-p
and M-n.

• Request Logging: Saves all requests and responses in a designated
directory, efficiently organizing your interactions with ChatGPT for
easy reference and review. Really handy for troubleshooting.

1

https://tonyaldon.com/chatgpt-emacs-integration-course/

Contents

1 First Request to OpenAI Using the Chat Completion API 5
1.1 Adding funds to Your credit balance on OpenAI Developer

Platform . 6
1.2 Creating an API Key on OpenAI Developer Platform 8
1.3 First Request to OpenAI Using the Chat Completion API . . 11

2 Chat Completion Streaming API 13
2.1 Curl Request Using a JSON File 13
2.2 Chat Completion Streaming API 15

2.2.1 Updating the Request for Streaming 15
2.2.2 Observing Streaming Responses 15
2.2.3 Response Breakdown 16

3 Developer and System Messages 16
3.1 Developer and System Messages Overview 17

3.1.1 Understanding Developer and System Messages 17
3.1.2 Modifying the Developer Instruction 17
3.1.3 API Request and Response 18

3.2 Replying in Spanish with More Constraints 19

4 Assistant Messages 21
4.1 Independent Requests . 21
4.2 Example Conversation . 21
4.3 Continuing the Dialogue . 22
4.4 Building Context . 23
4.5 Final Response . 24
4.6 Conclusion . 24

5 The Basics of make-process 25
5.1 Executing Commands with make-process 25
5.2 The Process Object . 26
5.3 Executing Commands with Pipes Using make-process 26
5.4 Process Sentinel Overview . 27
5.5 Branching on the Event Types in the Process Sentinel 28
5.6 Printing the Process Buffer Content in the Echo Area 29
5.7 Redirecting Process Buffer Content to Another Buffer 29

2

6 First Request To OpenAI From Emacs Lisp 30
6.1 Review of The Last Lesson 30
6.2 Renaming The Process Name and Process Buffers 30
6.3 Killing The Process Buffers 32
6.4 Sending our First OpenAI Request from Emacs Lisp 32
6.5 Defining chatgpt-send Command in chatgpt.el File 34

7 Refactoring chatgpt-send and introducing chatgpt-api-key 35
7.1 Refactoring chatgpt-send with chatgpt-command 35
7.2 Introducing chatgpt-api-key to hold OpenAI API Key . . . 36

7.2.1 Updated Code . 36
7.2.2 Testing with an Incorrect API Key 36

7.3 Updating chatgpt-command Function Signature 37

8 Making the Prompt Dynamic in Requests 38
8.1 Writing a JSON Object to a File 38
8.2 Writing the OpenAI Request to a File 39
8.3 Updating chatgpt-send . 41
8.4 Entering the Prompt from a Buffer 42

9 Formatting Requests and Responses in Markdown 43
9.1 Parsing and Returning a JSON Object with json-read 43
9.2 Accessing Elements in a Nested Structure with map-nested-elt 45
9.3 Inserting the Assistant Response instead of the JSON Response 45
9.4 Formatting with markdown-mode 47

10 Saving Requests to Disk 49
10.1 Refactoring chatgpt-send with chatgpt-request 49
10.2 Refactoring chatgpt-send with chatgpt-callback 49
10.3 Saving Requests . 50
10.4 Saving Responses . 52
10.5 Refactoring chatgpt-send with chatgpt-json-encode 53
10.6 Adding Links to Request Directories 53

11 The Prompt Buffer 55
11.1 Displaying the Prompt Buffer with chatgpt 55
11.2 Defining chatgpt-mode . 55
11.3 Introducing chatgpt-model Variable 56
11.4 Mode Line of the Prompt Buffer 57
11.5 Executing chatgpt-mode Once 57

3

11.6 Creating chatgpt-dir in chatgpt-mode 58
11.7 Defining chatgpt-mode-map keymap 58
11.8 chatgpt.el . 59

12 Making the response buffer pop up upon receipt 61
12.1 Refactoring chatgpt-send into chatgpt-send-request . . . 62
12.2 Deleting The Prompt Buffer window 63
12.3 Ensuring the Response Buffer is Displayed 63
12.4 Adding Notifications . 64

13 Handling API Errors 64
13.1 Signaling API Errors . 64
13.2 Saving API Errors . 67
13.3 Signaling and Saving Process Errors 68
13.4 chatgpt.el . 69

14 Timestamp Files 73
14.1 Purpose of Timestamp Files 73
14.2 Writing Timestamp Files . 74
14.3 Defining the chatgpt-timestamp Function 75
14.4 Defining the chatgpt-requests Function 75

15 Overview of the Ring Package 76
15.1 Creating Rings and Inserting Elements 77
15.2 Accessing Ring Elements . 78

16 Implementing Prompt History Feature 79
16.1 Binding M-p and M-n in chatgpt-mode-map 79
16.2 Defining chatgpt-history and chatgpt-push 80
16.3 Implementing the chatgpt-previous Command 81

16.3.1 Testing the chatgpt-previous Command 82
16.4 Handling Empty chatgpt-history 83
16.5 Initializing chatgpt-history from Disk 83
16.6 Refactoring for Clean Code 85
16.7 chatgpt.el . 86

17 The Waiting Widget 91

4

18 Managing the API Key 92
18.1 Redefining the API Key Variable 93
18.2 Modifying the chatgpt-command Function 93
18.3 Adding the API Key to ~/.authinfo File 93
18.4 Restarting Emacs for Changes to Take Effect 93
18.5 Testing the Setup . 94

19 chatgpt.el - Simple ChatGPT Emacs Integration 94
19.1 Overview . 94
19.2 Key Features . 94
19.3 Get Started in Minutes . 94
19.4 chatgpt.el . 95

1 First Request to OpenAI Using the Chat Com-
pletion API

Welcome to the first lesson of the ChatGPT Emacs course. In this lesson,
we will send our first request to OpenAI using the Chat Completion API,
replicating the process of interacting with ChatGPT from the command line.

To illustrate, when we visit chatgpt.com and type "Hello!", we receive a
reply saying, "Hey there, how is it going?"

Figure 1: ChatGPT Interaction

5

https://chatgpt.com

Now, we will learn how to achieve this interaction using the curl com-
mand in the terminal. Let’s get started.

Link: https://chatgpt.com

1.1 Adding funds to Your credit balance on OpenAI Devel-
oper Platform

To add funds to your credit balance on the OpenAI Developer Platform,
follow these steps:

1. Account Access: If you already have an account on chatgpt.com, you
can use the same credentials to log in. If not, create a new account on
the platform.

2. Navigating Projects: Once logged in, click on your current project
in the top left corner.

Figure 2: Current Project

3. Manage Projects: From the dropdown menu, select Manage Projects.

4. Go to Billing: In the sidebar on the left, click on Billing to access
the credit balance management page.

5. Add to Credit Balance: Click on Add to Credit Balance.

6

https://chatgpt.com
https://platform.openai.com

Figure 3: Manage Projects

Figure 4: Add to Credit Balance

7

6. Input Payment Details: A recommended starting amount is $5,
which is sufficient for the entire course; you will spend less than $0.10
throughout. Enter your payment details and click Continue.

Figure 5: Payment Details

By following these steps, you can easily fund your credit balance for API
calls.

Link: https://platform.openai.com

1.2 Creating an API Key on OpenAI Developer Platform

With sufficient funds in your credit balance, you can proceed to generate an
API key.

1. Access the Dashboard: Navigate to the OpenAI Developer Platform
and click on the Dashboard tab located at the top.

2. Open API Keys Menu: On the sidebar, select the API Keys option.

3. Create New API Key: You will now see the option to create new
API keys as well as view existing ones. Click on the option to create a
new secret key. Name this key according to your project; for example,
use chatgpt-emacs.

8

https://platform.openai.com

Figure 6: Dashboard

Figure 7: API Keys Menu

9

10

4. Copy the API Key: After the API key is generated, copy it for use
in your project:

sk-proj-7pQDxN...w-D40A

Make sure to store this API key securely and avoid sharing it publicly.

1.3 First Request to OpenAI Using the Chat Completion
API

With our API key generated, we can now send requests to OpenAI. In this
section, we will send the prompt "Hello!" and receive a response via the
terminal using curl.

Referencing the Chat Completion API documentation, we will modify
the default curl request (non-streaming) by substituting $OPENAI_API_KEY
with our actual API key:

curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-proj-7pQDxN...w-D40A" \
-d '{

"model": "gpt-4o",
"messages": [

{
"role": "developer",
"content": "You are a helpful assistant."

},
{

"role": "user",
"content": "Hello!"

}
]

}'

The -d option sends a JSON object containing two required parame-
ters: model and messages. In this case, we use the gpt-4o model, and the
messages array includes our prompt "Hello!".

The messages array contains two entries: one with the role developer
and another with the role user with the content "Hello!".

Upon executing the request, we receive the following JSON response from
OpenAI:

11

https://platform.openai.com/docs/api-reference/chat

{
"id": "chatcmpl-B2ENfnqI4JikQY1bE34dNmhPR0OnF",
"object": "chat.completion",
"created": 1739871635,
"model": "gpt-4o-2024-08-06",
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "Hello! How can I assist you today?",
"refusal": null

},
"logprobs": null,
"finish_reason": "stop"

}
],
"usage": {

"prompt_tokens": 19,
"completion_tokens": 10,
"total_tokens": 29,
"prompt_tokens_details": {

"cached_tokens": 0,
"audio_tokens": 0

},
"completion_tokens_details": {

"reasoning_tokens": 0,
"audio_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0

}
},
"service_tier": "default",
"system_fingerprint": "fp_523b9b6e5f"

}

This response contains details such as the completion ID, the model
used, and the message generated by the assistant, along with usage statistics
regarding token counts.

Specifically, the choices field in the response reveals the assistant’s reply:

12

"Hello! How can I assist you today?"
This concludes our first lesson in the ChatGPT Emacs course. In up-

coming lessons, we will delve deeper into the Chat Completion API, focusing
on the streaming API and various message types that can be included in re-
quests.

Link: https://platform.openai.com/docs/api-reference/chat

2 Chat Completion Streaming API

In this lesson, we will explore how to configure OpenAI to return responses
as a continuous stream of data instead of a JSON object.

2.1 Curl Request Using a JSON File

To modify the curl request from the previous lesson, we will store the JSON
payload in a file rather than including it directly in the command line. We
will specify the full path to the JSON file as an argument in the curl com-
mand.

First, we create the JSON file at /home/tony/chatgpt-emacs/request.json
with the following content:

{
"model": "gpt-4o",
"messages": [

{
"role": "developer",
"content": "You are a helpful assistant."

},
{

"role": "user",
"content": "Hello!"

}
]

}

To send the request using curl, we use the @ symbol to reference the file:

curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \

13

https://platform.openai.com/docs/api-reference/chat

-H "Authorization: Bearer sk-proj-7pQDxN...w-D40A" \
-d @/home/tony/chatgpt-emacs/request.json

Upon sending this request to the OpenAI API, we receive the following
response:

{
"id": "chatcmpl-B32ndGQSiexNKDdi5WKvHmYLZOihy",
"object": "chat.completion",
"created": 1740065445,
"model": "gpt-4o-2024-08-06",
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "Hello! How can I assist you today?",
"refusal": null

},
"logprobs": null,
"finish_reason": "stop"

}
],
"usage": {

"prompt_tokens": 19,
"completion_tokens": 10,
"total_tokens": 29,
"prompt_tokens_details": {

"cached_tokens": 0,
"audio_tokens": 0

},
"completion_tokens_details": {

"reasoning_tokens": 0,
"audio_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0

}
},
"service_tier": "default",
"system_fingerprint": "fp_fee4aaf18f"

}

14

2.2 Chat Completion Streaming API

In previous interactions with the OpenAI Chat Completion API, we received
responses formatted as JSON objects. This is standard behavior. To modify
this and enable streaming responses, we need to adjust the request payload.

2.2.1 Updating the Request for Streaming

To enable streaming, we include the stream parameter set to true in our
JSON request like this:

{
"model": "gpt-4o",
"messages": [

{
"role": "developer",
"content": "You are a helpful assistant."

},
{

"role": "user",
"content": "Hello!"

}
],
"stream": true

}

2.2.2 Observing Streaming Responses

Once the updated request is sent to OpenAI, we start receiving data in
chunks. Here’s a sample of the streamed output:

data: {"id":"chatcmpl-B33LUkTZbglsA7jDBpkMhDuQd6Mxp",
"object":"chat.completion.chunk","created":1740067544
,"model":"gpt-4o-2024-08-06","service_tier":"default"
,"system_fingerprint":"fp_fee4a af18f","choices":[{"i
ndex":0,"delta":{"role":"assistant","content":"","ref
usal":null},"logprobs ":null,"finish_reason":null}]}

data: {"id":"chatcmpl-B33LUkTZbglsA7jDBpkMhDuQd6Mxp",
"object":"chat.completion.chunk","created":1740067544
,"model":"gpt-4o-2024-08-06","service_tier":"default"

15

,"system_fingerprint":"fp_fee4aaf18f","choices":[{"in
dex":0,"delta":{"content":"Hello"},"logprobs":null,"f
inish_reason":null}]}

... [additional chunks omitted for brevity] ...

data: {"id":"chatcmpl-B33LUkTZbglsA7jDBpkMhDuQd6Mxp","
object":"chat.completion.chunk","created" :1740067544,
"model":"gpt-4o-2024-08-06","service_tier":"default","
system_fingerprint":"fp_fee4aaf18f","choices":[{"index
":0,"delta":{},"logprobs":null,"finish_reason":"stop"}
]}

data: [DONE]

2.2.3 Response Breakdown

In the streamed response, data is sent in chunks. Each chunk may contain
parts of the message like so:

data: {"id":"chatcmpl-B33LUkTZbglsA7jDBpkMhDuQd6Mxp",
..."choices":[{"...,"delta":{"content":" How"}...}]}

data: {"id":"chatcmpl-B33LUkTZbglsA7jDBpkMhDuQd6Mxp",
..."choices":[{"...,"delta":{"content":" can"}...}]}

data: {"id":"chatcmpl-B33LUkTZbglsA7jDBpkMhDuQd6Mxp",
..."choices":[{"...,"delta":{"content":" I"}...}]}

data: {"id":"chatcmpl-B33LUkTZbglsA7jDBpkMhDuQd6Mxp",
..."choices":[{"...,"delta":{"content":" assist"}...}]}

Each delta field corresponds to a portion of the generated response,
progressively building the output.

3 Developer and System Messages

In this lesson, we will learn how to customize our requests to receive all
responses from OpenAI in Spanish.

16

3.1 Developer and System Messages Overview

In our previous interactions with the OpenAI API, we primarily focused
on the last message in the messages parameter, specifically the one from
the user role containing the prompt. This approach overlooked the initial
message designated as developer, which has been set to "you are a helpful
assistant." We will adjust this developer message to instruct the model to
respond in Spanish.

3.1.1 Understanding Developer and System Messages

According to the API reference, developer messages dictate instructions
that the model must adhere to irrespective of the user’s input. This ensures
the model consistently follows specified guidelines.

Figure 8: Developer Messages

The system messages apply to models such as gpt-4o and gpt-4o-mini,
while models from o1 onward utilize developer messages.

Link: https://platform.openai.com/docs/api-reference/chat

3.1.2 Modifying the Developer Instruction

To ensure our model replies in Spanish, we will update the developer mes-
sage in the /home/tony/chatgpt-emacs/request.json file to state, "Reply
in Spanish":

17

https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat

{
"model": "gpt-4o",
"messages": [

{
"role": "developer",
"content": "Reply in Spanish."

},
{

"role": "user",
"content": "Hello!"

}
]

}

3.1.3 API Request and Response

Upon submitting this request to the OpenAI API, we receive a response in
Spanish:

{
...
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "¡Hola! ¿Cómo puedo ayudarte hoy?",
"refusal": null

},
...

}
],
...

}

This implementation clearly illustrates how modifying the developer
message influences the model’s output, enabling consistent bilingual responses.

18

3.2 Replying in Spanish with More Constraints

We successfully configured the gpt-4o model to respond in Spanish by mod-
ifying the optional developer message. Although it can be omitted in re-
quests, we will enhance it now by introducing additional constraints without
conducting a tutorial on prompting.

Initially, we change the developer message to "Reply in Spanish with at
least three sentences," resulting in the following JSON request:

{
"model": "gpt-4o",
"messages": [

{
"role": "developer",
"content": "Reply in Spanish with at least 3 sentences."

},
{

"role": "user",
"content": "Hello!"

}
]

}

The response generated met our criteria, providing three sentences as
requested:

{
...
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "¡Hola! ¿Cómo estás? Espero que estés

teniendo un buen día. Si necesitas ayuda con algo o quie
res hablar sobre un tema en específico, estaré aquí para
ayudarte.",

"refusal": null
},
...

}

19

],
...

}

Next, we introduce a new constraint specifying that we want the response
in a list format. We update the developer message to "Reply in Spanish
with at least three sentences in a list format" and submit the request:

{
"model": "gpt-4o",
"messages": [

{
"role": "developer",
"content": "Reply in Spanish with at least 3 sentences

in a list format."
},
{

"role": "user",
"content": "Hello!"

}
]

}

The response generated has been formatted as requested:

{
...
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "¡Hola!\n\n1. Espero que estés teniendo

un buen día. \n2. Si tienes alguna pregunta o necesitas ay
uda con algo, no dudes en decírmelo.\n3. Estoy aquí para a
yudarte en lo que necesites.",

"refusal": null
},
...

}

20

],
...

}

In our next discussion, we will explore how to use assistant messages
in the request data to facilitate multi-turn conversations.

4 Assistant Messages

In this lesson, we will explore how to utilize assistant messages for main-
taining conversation contexts when interacting with the Chat Completion
API, specifically with the gpt-4o model.

4.1 Independent Requests

It’s crucial to understand that each request to the API is independent. With-
out context linking, subsequent requests cannot reference earlier ones. So,
how can we maintain continuity in a conversation with models like gpt-4o?
The answer lies in using assistant messages, which are the responses gener-
ated by the model to user queries. Including these messages in the messages
array of our requests allows us to create a coherent dialogue.

4.2 Example Conversation

Let’s illustrate this with a simple conversation. We start by sending a basic
request with the user message "Hello!":

{
"model": "gpt-4o",
"messages": [

{
"role": "user",
"content": "Hello!"

}
]

}

In response, we receive an assistant message:

{
"id": "chatcmpl-B3Kxois3s7jGJLIVLg6m5xPNQpmWg",

21

"object": "chat.completion",
"created": 1740135268,
"model": "gpt-4o-2024-08-06",
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "Hello! How can I assist you today?",
"refusal": null

},
...

}
],
...

}

4.3 Continuing the Dialogue

Next, we take the assistant’s message and include it in the messages array
for the next request. We also add a new user message expressing hunger:

{
"model": "gpt-4o",
"messages": [

{
"role": "user",
"content": "Hello!"

},
{

"role": "assistant",
"content": "Hello! How can I assist you today?"

},
{

"role": "user",
"content": "I'm hungry."

}
]

}

When we send this request, the model responds as follows:

22

{
...
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "I'm here to help! What type of food are you

in the mood for? Are you thinking of making something at home,
or would you prefer to order out?",

"refusal": null
},
...

}
],
...

}

4.4 Building Context

We continue to enhance the conversation by adding the latest assistant
message before posing another user question, this time focusing on cooking
at home:

{
"model": "gpt-4o",
"messages": [

{
"role": "user",
"content": "Hello!"

},
{

"role": "assistant",
"content": "Hello! How can I assist you today?"

},
{

"role": "user",
"content": "I'm hungry."

},
{

23

"role": "assistant",
"content": "I'm here to help! What type of food are you

in the mood for? Are you thinking of making something at home,
or would you prefer to order out?"

},
{

"role": "user",
"content": "home"

}
]

}

4.5 Final Response

Based on the entire conversation context, the model processes the latest
input and replies:

{
...
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "Great! Do you have any specific ingredients

on hand, or any particular type of cuisine you’re interested in?
Let me know so I can suggest a recipe!",

"refusal": null
},
...

}
],
...

}

4.6 Conclusion

This demonstrates how to leverage assistant messages for interactive con-
versations with LLMs. In the next lesson, we will transition to writing our
Emacs package.

24

5 The Basics of make-process

In the previous lesson, we explored how to send a request to OpenAI with a
simple prompt, "Hello!", using the curl command in the terminal. Now, we
aim to replicate this functionality in Emacs using an Emacs Lisp program,
specifically focusing on executing the curl command asynchronously.

To achieve this, we will utilize the make-process function, which is de-
signed for creating and managing asynchronous processes within Emacs.
Our objective in this lesson is to understand the fundamentals of the make-
process function and how to leverage it for our curl command execution.

Let’s delve into the details of using make-process for this purpose.

5.1 Executing Commands with make-process

To execute the following command echo foo bar baz with the function
make-process

$ echo foo bar baz
foo bar baz

we can evaluate the following expression

(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "echo" "foo" "bar" "baz"))

which starts the program echo in a subprocess passing it the arguments foo,
bar, baz and appends its standard output to the buffer foo-buff creating
it if it doesn’t exist:

foo bar baz

Process foo-name finished

Note that Process foo-name finished has been added by the default
process sentinel function. We’ll talk more about this later.

25

5.2 The Process Object

This section details functions that we can apply to process objects created
by the make-process function.

First, we define the variable foo-proc to hold the process object returned
by make-process, which executes the command echo foo bar baz.

(setq foo-proc
(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "echo" "foo" "bar" "baz")))

Next, we verify that foo-proc is indeed of the process type and has the
name foo-name:

(type-of foo-proc) ;; process
(process-name foo-proc) ;; "foo-name"

We can retrieve the buffer associated with the foo-proc process using
the process-buffer function, and check whether foo-proc is still alive with
the process-live-p function:

(process-buffer foo-proc) ;; #<buffer foo-buff>
(process-live-p foo-proc) ;; nil

By following these steps, we can effectively manage and query the status
of processes in Emacs Lisp.

5.3 Executing Commands with Pipes Using make-process

To run a command line that includes a pipe with the make-process func-
tion, we need to adapt our approach since pipe syntax is interpreted by the
command shell, not as arguments to the program.

For example, this command outputs foo to stdout and returns after 2
seconds:

$ sleep 2 | echo foo
foo

26

However, using make-process, we cannot directly specify both sleep
and echo as separate programs because the :command keyword only accepts
a single program file.

Instead, we can leverage the -c option of the sh command, which allows
us to execute the next argument as a command. We can format our command
like this:

$ sh -c 'sleep 2 | echo foo'
foo

This effectively runs the original command by interpreting it as a com-
plete shell command.

Finally, we can use make-process with that command like this:

(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "sh" "-c" "sleep 2 | echo foo"))

When we evaluate the above expression, it produces the following output
in the foo-buff buffer after 2 seconds:

foo

Process foo-name finished

This setup enables us to run complex command lines with pipes using
make-process effectively.

5.4 Process Sentinel Overview

Finally, in the following 4 sections we will see how to transfer the contents
of a process buffer into another buffer once the process finishes. This is
achieved using process sentinel functions attached to the initiated process.

A sentinel function is triggered whenever there is a status change in the
process. The first argument passed to the sentinel is the process itself, while
the second argument describes the event that caused the status change.

For instance, consider the following code snippet:

(make-process
:name "foo-name"

27

:buffer "foo-buff"
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel (lambda (process event)

(message "%S - %S" process event)))

When this expression is evaluated, it will display the following message
in the echo area after 1 second:

#<process foo-name> - "finished\n"

To observe a different event type, we can utilize the kill-process func-
tion, which terminates the process initiated by make-process. Here’s how
we can apply the same sentinel function in this context:

(kill-process
(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel (lambda (process event)

(message "%S - %S" process event))))

After evaluating this expression, we see the following output in the echo
area after 1 second:

#<process foo-name> - "killed\n"

5.5 Branching on the Event Types in the Process Sentinel

We will now enhance the sentinel function to differentiate between success-
ful process completion and unexpected terminations. If the process status
changes to "finished\n" we print OK in the echo area. Conversely, for any
other status, we display Error:

(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel (lambda (process event)

(if (string= event "finished\n")
(message "OK")

(message "Error"))))

28

5.6 Printing the Process Buffer Content in the Echo Area

Now, we can modify the sentinel function to capture the process buffer’s
content and display it in the echo area:

(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let ((stdout (with-current-buffer (process-buffer process)
(buffer-string))))

(message "%s" stdout)))))

Within the let binding, we use with-current-buffer to switch to the
process’s output buffer. This allows us to read its contents. buffer-string
extracts the complete string output, which contains the string foo. The final
message function outputs the captured string to the echo area, indicating
the process’s output.

5.7 Redirecting Process Buffer Content to Another Buffer

Finally we modify the previous code snippet to redirect the content of the
process buffer into a new buffer named bar, rather than displaying it in the
echo area. To achieve this, we utilize the get-buffer-create function to
create the bar buffer. We then use the insert function to place the output
from the process buffer into the bar buffer:

(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let ((stdout (with-current-buffer (process-buffer process)
(buffer-string))))

29

(with-current-buffer (get-buffer-create "bar")
(insert stdout))))))

6 First Request To OpenAI From Emacs Lisp

Until now, we have explored the use of the OpenAI Chat Completion API
with curl and how to execute command line operations in Emacs Lisp using
the make-process function. Leveraging this knowledge, we can now create
our first Emacs command chatgtp-send which sends the prompt "Hello!"
to OpenAI and appends the JSON response to a buffer.

6.1 Review of The Last Lesson

Specifically, in the previous lesson, we implemented an expression that in-
vokes the make-process function. This function starts an asynchronous
process to execute a command that outputs foo to the standard output and
completes after 1 second.

We also defined the associated sentinel function such that if the process
completes successfully, its standard output is appended to the buffer bar.
Conversely, if the process is terminated prematurely, such as being killed,
the message Error will be displayed in the echo area.

(make-process
:name "foo-name"
:buffer "foo-buff"
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let ((stdout (with-current-buffer (process-buffer process)
(buffer-string))))

(with-current-buffer (get-buffer-create "bar")
(insert stdout))))))

6.2 Renaming The Process Name and Process Buffers

To rename the process from foo-name to chatgpt, the name of our package,
we use the following code:

30

(make-process
:name "chatgpt"
...)

Note that if a process named chatgpt already exists, the make-process
function will generate a unique identifier for the new process to avoid naming
collisions.

Currently, we are using the same process buffer foo-buff for all requests.
This single buffer approach poses challenges for sending concurrent requests
and managing JSON responses from OpenAI. To address this, we will gener-
ate unique buffer names for each request using generate-new-buffer-name:

(make-process
...
:buffer (generate-new-buffer-name "chatgpt")
...)

Next, instead of redirecting OpenAI JSON responses to the buffer bar
(currently, responses are the output foo of the command sleep 1 | echo
foo) we will direct them to the buffer *chatgpt[requests]*. Additionally,
rather than inserting the response at the current point, we will append it by
moving the point to the end of the buffer using (goto-char (point-max))
before any insertion:

(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let ((stdout (with-current-buffer (process-buffer process)
(buffer-string))))

(with-current-buffer (get-buffer-create "*chatgpt[requests]*")
(goto-char (point-max))
(insert stdout))))))

This implementation allows us to effectively manage multiple requests
and handle the responses in an orderly manner.

31

6.3 Killing The Process Buffers

In our implementation, we utilize a unique process buffer for each invocation
of make-process, which can lead to the accumulation of numerous inactive
buffers if not properly managed. To prevent this, we ensure that once pro-
cessing is complete, we kill these buffers using the kill-buffer function
with the expression (kill-buffer (process-buffer process)).

(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" "sleep 1 | echo foo")
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let ((stdout (with-current-buffer (process-buffer process)
(buffer-string))))

(with-current-buffer (get-buffer-create "*chatgpt[requests]*")
(goto-char (point-max))
(insert stdout)))

(kill-buffer (process-buffer process)))))

6.4 Sending our First OpenAI Request from Emacs Lisp

In this section, we’ll send our first request to the OpenAI API using Emacs
Lisp. To do so, we modify the previous make-process calls by replac-
ing the original command sleep 1 | echo foo with the curl command
we wrote in the lesson 2 that sends the JSON request found in the file
/home/tony/chatgpt-emacs/request.json:

{
"model": "gpt-4o",
"messages": [

{
"role": "user",
"content": "Hello!"

}
]

}

Here’s the updated Emacs Lisp code:

32

(let ((command (concat "curl https://api.openai.com/v1/chat/completions "
"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer sk-proj-7pQDxN...w-D40A "
"-d @/home/tony/chatgpt-emacs/request.json")))

(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let ((stdout (with-current-buffer (process-buffer process)
(buffer-string))))

(with-current-buffer (get-buffer-create "*chatgpt[requests]*")
(goto-char (point-max))
(insert stdout)))

(kill-buffer (process-buffer process))))))

Evaluating the previous expression appends the following JSON response
from OpenAI in *chatgpt[requests]* buffer:

{
"id": "chatcmpl-B59xiKIxwA1xwxTytSsrcTXBO7CkH",
"object": "chat.completion",
"created": 1740569634,
"model": "gpt-4o-2024-08-06",
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "Hello! How can I assist you today?",
"refusal": null

},
"logprobs": null,
"finish_reason": "stop"

}
],
"usage": {

33

"prompt_tokens": 9,
"completion_tokens": 10,
"total_tokens": 19,
"prompt_tokens_details": {

"cached_tokens": 0,
"audio_tokens": 0

},
"completion_tokens_details": {

"reasoning_tokens": 0,
"audio_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0

}
},
"service_tier": "default",
"system_fingerprint": "fp_eb9dce56a8"

}

6.5 Defining chatgpt-send Command in chatgpt.el File

Finally, we write the first command for our chatgpt package in chatgpt.el
file, naming it chatgpt-send. This command sends a request to Ope-
nAI with the prompt "Hello!" fetched from the file /home/tony/chatgpt-
emacs/request.json.

;;; chatgpt.el --- Simple ChatGPT integration -*- lexical-binding: t; -*-

(defun chatgpt-send ()
"Send the request \"Hello!\" to OpenAI."
(interactive)
(let ((command (concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer sk-proj-7pQDxN...w-D40A "
"-d @/home/tony/chatgpt-emacs/request.json")))

(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

34

(if (not (string= event "finished\n"))
(message "Error")

(let ((stdout (with-current-buffer (process-buffer process)
(buffer-string))))

(with-current-buffer (get-buffer-create "*chatgpt[requests]*")
(goto-char (point-max))
(insert stdout)))

(kill-buffer (process-buffer process)))))))

(provide 'chatgpt)

Next, we will refactor the curl command into a separate function for
better organization.

7 Refactoring chatgpt-send and introducing chatgpt-
api-key

In this section, we will refactor the chatgpt-send function. We will create
a new function named chatgpt-command to encapsulate the curl command
logic. Additionally, we will introduce a variable called chatgpt-api-key to
store our OpenAI API key securely.

7.1 Refactoring chatgpt-send with chatgpt-command

We introduce the chatgpt-command function, which generates the curl com-
mand string. This allows us to streamline chatgpt-send by replacing the
existing command code with a call to chatgpt-command.

(defun chatgpt-command ()
"Return the curl command."
(concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer sk-proj-7pQDxN...w-D40A "
"-d @/home/tony/chatgpt-emacs/request.json"))

(defun chatgpt-send ()
"Send the request \"Hello!\" to OpenAI."
(interactive)
(let ((command (chatgpt-command)))

(make-process

35

:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel (lambda (process event) ...))))

After implementing these changes and evaluating these expressions, call-
ing chatgpt-send command should successfully populate the buffer *chat-
gpt[requests]* with a new response from OpenAI, confirming that the
functionality remains intact.

7.2 Introducing chatgpt-api-key to hold OpenAI API Key

In this update, we refactor the hardcoded API key previously embedded
within the chatgpt-command function. Instead, we store it in a new variable,
chatgpt-api-key. This approach allows for easier future modifications to
the API key. And in upcoming lessons, we will explore a more secure method
for storing the API key, rather than embedding it directly in the source code.

7.2.1 Updated Code

(defvar chatgpt-api-key "sk-proj-7pQDxN...w-D40A"
"Variable to hold the OpenAI API key.")

(defun chatgpt-command ()
"Construct and return the curl command for OpenAI API."
(format
(concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer %s' "
"-d @/home/tony/chatgpt-emacs/request.json")

chatgpt-api-key))

7.2.2 Testing with an Incorrect API Key

For testing purposes, we can temporarily set the chatgpt-api-key variable
to an invalid key, for example, foo-api-key. When invoking the chatgpt-
send command, the OpenAI API responded with an error message displayed
in the *chatgpt[requests]* buffer:

{
"error": {

36

"message": "Incorrect API key provided: foo-api-key.
You can find your API key at https://platform.openai.com/acc
ount/api-keys.",

"type": "invalid_request_error",
"param": null,
"code": "invalid_api_key"

}
}

This demonstrates that the API key is validated properly by OpenAI.

7.3 Updating chatgpt-command Function Signature

Finaly, we modify the chatgpt-command function to accept the absolute
path to the request.json file as an argument. This change allows for easier
adjustments to the file path in the future.

(defun chatgpt-command (req-path)
"Return the curl command."
(format
(concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer %s' "
"-d @%s")

chatgpt-api-key req-path))

(defun chatgpt-send ()
"Send the request \"Hello!\" to OpenAI."
(interactive)
(let ((command (chatgpt-command "/home/tony/chatgpt-emacs/request.json")))

(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel (lambda (process event) ...))))

For testing, we can pass a non-existent file path, such as "/home/tony/chatgpt-
emacs/request", to the chatgpt-command function in chatgpt-send. When
invoking the chatgpt-send command, the curl command produced warn-
ings, and the OpenAI API returned an error message, both of which were
displayed in the *chatgpt[requests]* buffer:

37

Warning: Couldn't read data from file "/home/tony/chatgpt-emacs/request",
Warning: this makes an empty POST.
{

"error": {
"message": "We could not parse the JSON body of your request.

(HINT: This likely means you aren't using your HTTP library correctly. The
OpenAI API expects a JSON payload, but what was sent was not valid JSON.
If you have trouble figuring out how to fix this, please contact us through
our help center at help.openai.com.)",

"type": "invalid_request_error",
"param": null,
"code": null

}
}

8 Making the Prompt Dynamic in Requests

In this lesson, we will enhance the chatgpt-send function to facilitate send-
ing requests with prompts entered in a buffer.

8.1 Writing a JSON Object to a File

In the following sections, we will learn how to create a request.json file
containing the JSON request sent to OpenAI.

First, we ensure to require the built-in json package:

(require 'json)

Next, we use the json-encode function to encode an Emacs Lisp object
into a JSON string:

(json-encode '(:foo "bar")) ;; "{\"foo\":\"bar\"}"

We Utilize the write-region function to write the JSON string to a file:

(write-region (json-encode '(:foo "bar"))
nil "/home/tony/chatgpt-emacs/request-1.json")

This will create the file /home/tony/chatgpt-emacs/request-1.json
containing:

{"foo":"bar"}

38

8.2 Writing the OpenAI Request to a File

We generate the following JSON request

{
"model": "gpt-4o",
"messages": [

{
"role": "user",
"content": "Hello!"

}
]

}

from Emacs Lisp. We bind it to a variable req, and write it to disk using
json-encode and write-region:

(let ((req `(:model "gpt-4o"
:messages ,(vector `(:role "user" :content "Hello!")))))

(write-region (json-encode req)
nil "/home/tony/chatgpt-emacs/request-1.json"))

Evaluating this expression updates the file /home/tony/chatgpt-emacs/request-
1.json with:

{"model":"gpt-4o","messages":[{"role":"user","content":"Hello!"}]}

To pretty-print the JSON request, we set json-encoding-pretty-print
to t:

(let ((json-encoding-pretty-print t)
(req `(:model "gpt-4o"

:messages ,(vector `(:role "user" :content "Hello!")))))
(write-region (json-encode req)

nil "/home/tony/chatgpt-emacs/request-1.json"))

Evaluating this expression yields the contents:

{
"model": "gpt-4o",
"messages": [

{

39

"role": "user",
"content": "Hello!"

}
]

}

We can further enhance our code’s flexibility by allowing prompts to
change. Let’s set prompt to "foo bar baz":

(let* ((json-encoding-pretty-print t)
(prompt "foo bar baz")
(req `(:model "gpt-4o"

:messages ,(vector `(:role "user" :content ,prompt)))))
(write-region (json-encode req)

nil "/home/tony/chatgpt-emacs/request-1.json"))

This writes the following to /home/tony/chatgpt-emacs/request-1.json:

{
"model": "gpt-4o",
"messages": [

{
"role": "user",
"content": "foo bar baz"

}
]

}

Lastly, we introduce req-path to replace the hard-coded file path:

(let* ((json-encoding-pretty-print t)
(prompt "Hello!")
(req `(:model "gpt-4o"

:messages ,(vector `(:role "user" :content ,prompt))))
(req-path "/home/tony/chatgpt-emacs/request-1.json"))

(write-region (json-encode req) nil req-path))

Evaluating this will again result in the file being updated to:

{
"model": "gpt-4o",

40

"messages": [
{

"role": "user",
"content": "Hello!"

}
]

}

8.3 Updating chatgpt-send

Now we can integrate the above functionality into chatgpt-send:

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(let* ((json-encoding-pretty-print t)

(prompt "Hello!")
(req `(:model "gpt-4o"

:messages ,(vector `(:role "user" :content ,prompt))))
(req-path "/home/tony/chatgpt-emacs/request.json")
(command (chatgpt-command req-path)))

(write-region (json-encode req) nil req-path)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel (lambda (process event) ...))))

After redefining chatgpt-send, calling it sends the JSON request in
/home/tony/chatgpt-emacs/request.json to OpenAI, resulting in the fol-
lowing response in the *chatgpt[requests]* buffer:

{
"id": "chatcmpl-B5v9nIsqd7sclUBOXJjrsXugrTWs1",
"object": "chat.completion",
"created": 1740751051,
"model": "gpt-4o-2024-08-06",
"choices": [

{
"index": 0,
"message": {

41

"role": "assistant",
"content": "Hi there! How can I assist you today?",
"refusal": null

},
...

}
],
...

}

8.4 Entering the Prompt from a Buffer

Finally, we modify chatgpt-send to use the current buffer content as the
prompt. We replace the hardcoded prompt "Hello!" with a call to buffer-
string:

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(let* ((json-encoding-pretty-print t)

(prompt (buffer-string))
(req `(:model "gpt-4o"

:messages ,(vector `(:role "user" :content ,prompt))))
(req-path "/home/tony/chatgpt-emacs/request.json")
(command (chatgpt-command req-path)))

(write-region (json-encode req) nil req-path)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel ...)))

Now, in a new buffer named *chatgpt*, if we enter the prompt I’m hun-
gry and call chatgpt-send, we received the following response from OpenAI:

{
"id": "chatcmpl-B5vaCM7XPe9sCdfeE0iNDjU0RiMuf",
"object": "chat.completion",
"created": 1740752688,
"model": "gpt-4o-2024-08-06",
"choices": [

42

{
"index": 0,
"message": {

"role": "assistant",
"content": "What are you in the mood for? I can suggest

recipes, snacks, or nearby restaurants if you let me know your
preferences!",

"refusal": null
},
...

}
],
...

}

By following these steps, we have successfully made the prompt dynamic,
enhancing the functionality of chatgpt-send.

9 Formatting Requests and Responses in Markdown

This lesson discusses how to format requests and responses using Markdown.

9.1 Parsing and Returning a JSON Object with json-read

To format responses in Markdown, we first need to parse the JSON received
from OpenAI using the json-read function. This function parses and returns
the JSON object at the current point in the buffer.

For example, if the point is at the start of a buffer containing the following
partial JSON response from OpenAI

{
"id": "chatcmpl-B5v9nIsqd7sclUBOXJjrsXugrTWs1",
"model": "gpt-4o-2024-08-06",
"choices": [

{
"index": 0,
"message": {

"role": "assistant",
"content": "Hi there! How can I assist you today?",
"refusal": null

43

},
"logprobs": null,
"finish_reason": "stop"

}
]

}

evaluating (json-read) in the minibuffer (using pp-eval-expression) yields
the following output in the *Pp Eval Output* buffer:

((id . "chatcmpl-B5v9nIsqd7sclUBOXJjrsXugrTWs1")
(model . "gpt-4o-2024-08-06")
(choices .

[((index . 0)
(message
(role . "assistant")
(content . "Hi there! How can I assist you today?")
(refusal))

(logprobs)
(finish_reason . "stop"))]))

By adjusting the variable bindings, we can alter the object type returned
by json-read. For instance, using the following expression

(let ((json-key-type 'keyword)
(json-object-type 'plist)
(json-array-type 'vector))

(json-read))

produces:

(:id "chatcmpl-B5v9nIsqd7sclUBOXJjrsXugrTWs1"
:model "gpt-4o-2024-08-06"
:choices
[(:index 0

:message (:role "assistant"
:content "Hi there! How can I assist you today?"
:refusal nil)

:logprobs nil
:finish_reason "stop")])

44

We can standardize this parsing with a utility function, chatgpt-json-
read:

(defun chatgpt-json-read ()
(let ((json-key-type 'keyword)

(json-object-type 'plist)
(json-array-type 'vector))

(json-read)))

9.2 Accessing Elements in a Nested Structure with map-nested-elt

To retrieve the prompt from the JSON response, we can use the map-nested-
elt function as shown below:

(let ((resp '(:id "chatcmpl-B5v9nIsqd7sclUBOXJjrsXugrTWs1"
:model "gpt-4o-2024-08-06"
:choices
[(:index 0

:message (:role "assistant"
:content "Hi there! How can I assist you today?"
:refusal nil)

:logprobs nil
:finish_reason "stop")])))

(map-nested-elt resp [:choices 0 :message :content]))
;; "Hi there! How can I assist you today?"

9.3 Inserting the Assistant Response instead of the JSON
Response

We will modify the chatgpt-send function so that it only appends the con-
tent string from the JSON response to the *chatgpt[requests]* buffer,
rather than the entire JSON structure.

Previously, the sentinel function would append the JSON response as a
raw string:

(lambda (process event)
(if (not (string= event "finished\n"))

(message "Error")
(let ((stdout (with-current-buffer (process-buffer process)

(buffer-string))))
(with-current-buffer (get-buffer-create "*chatgpt[requests]*")

45

(goto-char (point-max))
(insert stdout)))

(kill-buffer (process-buffer process))))

Now, instead of treating the JSON response as a string, we will parse it
using chatgpt-json-read and bind the parsed result to the resp variable:

(lambda (process event)
(if (not (string= event "finished\n"))

(message "Error")
(let ((resp (with-current-buffer (process-buffer process)

(goto-char (point-min))
(chatgpt-json-read))))

(with-current-buffer (get-buffer-create "*chatgpt[requests]*")
(goto-char (point-max))
(insert (format "%s\n" resp))))

(kill-buffer (process-buffer process))))

This modification allows us to see the following response in the *chat-
gpt[requests]* buffer after sending a request to OpenAI:

(:id chatcmpl-B7IV75YO9l840ovOTyUsug9pny371 :object chat.comple
tion :created 1741079113 :model gpt-4o-2024-08-06 :choices [(:i
ndex 0 :message (:role assistant :content Hi there! How can I a
ssist you today? :refusal nil) :logprobs nil :finish_reason sto
p)] :usage (:prompt_tokens 9 :completion_tokens 11 :total_token
s 20 :prompt_tokens_details (:cached_tokens 0 :audio_tokens 0)
:completion_tokens_details (:reasoning_tokens 0 :audio_tokens 0
:accepted_prediction_tokens 0 :rejected_prediction_tokens 0)) :
service_tier default :system_fingerprint fp_eb9dce56a8)

We then extract the assistant’s response using map-nested-elt:

(lambda (process event)
(if (not (string= event "finished\n"))

(message "Error")
(let* ((resp (with-current-buffer (process-buffer process)

(goto-char (point-min))
(chatgpt-json-read)))

(response (map-nested-elt resp [:choices 0 :message :content])))
(with-current-buffer (get-buffer-create "*chatgpt[requests]*")

46

(goto-char (point-max))
(insert response)))

(kill-buffer (process-buffer process))))

Now, after sending a request to OpenAI, the *chatgpt[requests]* buffer
shows the following:

Hello! How can I assist you today?

Note that in the previous code snippet the let expression has been
changed to let* to have resp bound when we use it to bind response
variable.

9.4 Formatting with markdown-mode

Next, we insert both the prompt and the response in the *chatgpt[requests]*
buffer and format it using Markdown.

First, we ensure that we require markdown-mode:

(require 'markdown-mode)

Since markdown-mode is not built-in, install it using your preferred method.
Before appending content to the *chatgpt[requests]* buffer, we acti-

vate markdown-mode. Below is the updated sentinel function:

(lambda (process event)
(if (not (string= event "finished\n"))

(message "Error")
(let* ((resp (with-current-buffer (process-buffer process)

(goto-char (point-min))
(chatgpt-json-read)))

(response (map-nested-elt resp [:choices 0 :message :content])))
(with-current-buffer (get-buffer-create "*chatgpt[requests]*")

(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n")))

(kill-buffer (process-buffer process))))

After sending a request with the prompt "Hello!", we get the following
output appended to the *chatgpt[requests]* buffer in Markdown format:

47

https://github.com/jrblevin/markdown-mode

Request

Prompt

Hello!

Response

Hello! How can I assist you today?

Note that in previous code snippet the prompt variable is bound in an
outer let in the chatgpt-send function.

Here is the current definition of the chatgpt-send function:

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(let* ((json-encoding-pretty-print t)

(prompt (buffer-string))
(req `(:model "gpt-4o"

:messages ,(vector `(:role "user" :content ,prompt))))
(req-path "/home/tony/chatgpt-emacs/request.json")
(command (chatgpt-command req-path)))

(write-region (json-encode req) nil req-path)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let* ((resp (with-current-buffer (process-buffer process)
(goto-char (point-min))
(chatgpt-json-read)))

(response (map-nested-elt resp [:choices 0 :message :content])))
(with-current-buffer (get-buffer-create "*chatgpt[requests]*")

(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

48

"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n")))

(kill-buffer (process-buffer process)))))))

Link: https://github.com/jrblevin/markdown-mode

10 Saving Requests to Disk

In this lesson, we will modify our code to save all requests and their cor-
responding responses to a specified directory instead of only overriding the
requests sent to OpenAI.

10.1 Refactoring chatgpt-send with chatgpt-request

To improve clarity and organization, we refactor our code to separate the
request generation process into a dedicated function, chatgpt-request.

(defun chatgpt-request (prompt)
"Return an OpenAI request with PROMPT."
`(:model "gpt-4o"

:messages ,(vector `(:role "user" :content ,prompt))))

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(let* ((json-encoding-pretty-print t)

(prompt (buffer-string))
(req (chatgpt-request prompt))
(req-path "/home/tony/chatgpt-emacs/request.json")
(command (chatgpt-command req-path)))

(write-region (json-encode req) nil req-path)
(make-process ...)))

10.2 Refactoring chatgpt-send with chatgpt-callback

Next, we enhance our chatgpt-send function by creating another func-
tion, chatgpt-callback, to manage appending prompts and responses to
the *chatgpt[requests]* buffer.

49

https://github.com/jrblevin/markdown-mode

(defun chatgpt-callback (prompt response)
"Append PROMPT and RESPONSE to the prompt buffer."
(with-current-buffer (get-buffer-create "*chatgpt[requests]*")

(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n")))

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(let* (...)

(write-region (json-encode req) nil req-path)
(make-process
...
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let* (...)
(chatgpt-callback prompt response))

(kill-buffer (process-buffer process)))))))

10.3 Saving Requests

In this section, we enhance the chatgpt-send command to save each request
sent to OpenAI in a unique subdirectory along with its corresponding JSON
response.

Before we modify the chatgpt-send function, let’s review a couple of
useful Emacs Lisp functions we’ll employ later.

The make-temp-file function allows us to create unique subdirectories
under the temporary-file-directory. For example:

(make-temp-file nil t) ;; "/tmp/5ukiOy"

This expression generates a subdirectory named 5ukiOy within /tmp/, the
current temporary-file-directory.

To ensure the path returned by make-temp-file ends with a forward
slash, we can use the file-name-as-directory function:

50

(file-name-as-directory (make-temp-file nil t)) ;; "/tmp/1I39B7/"

Additionally, we can temporarily set the temporary-file-directory to
a specified existing directory, allowing subdirectories to be relative to that
path:

(make-directory "/tmp/foo/bar/" t)
(let ((temporary-file-directory "/tmp/foo/bar/"))

(file-name-as-directory (make-temp-file nil t)))
;; "/tmp/foo/bar/LcMrzD/"

In this snippet, we used make-directory to create /tmp/foo/bar/, with the
t parameter enabling the creation of any missing parent directories.

Now, let’s integrate this into our package. We introduce the chatgpt-
dir variable to specify the requests directory. Within the chatgpt-send
function, we bind temporary-file-directory to chatgpt-dir. We then
create a new subdirectory, assigning its path to the req-dir variable and
defining req-path as the request.json file within req-dir. We also en-
sure the existence of the chatgpt-dir. Below is the updated chatgpt-send
function:

(defvar chatgpt-dir "/home/tony/chatgpt-emacs/requests/"
"Request directory.")

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(make-directory chatgpt-dir t)
(let* (...

(req (chatgpt-request prompt))
(temporary-file-directory chatgpt-dir)
(req-dir (file-name-as-directory (make-temp-file nil t)))
(req-path (concat req-dir "request.json"))
...)

(message "chatgpt: %s" req-dir)
(write-region (json-encode req) nil req-path)
(make-process ...)))

When invoking chatgpt-send with the prompt "Hello!", the request is
saved in the file /home/tony/chatgpt-emacs/requests/U4v02L/request.json
as follows:

51

{
"model": "gpt-4o",
"messages": [

{
"role": "user",
"content": "Hello!"

}
]

}

Additionally, the following prompt and response are appended to the
chatgpt[requests] buffer:

Request

Prompt

Hello!

Response

Hello! How can I assist you today?

10.4 Saving Responses

Next, we implement functionality to write the JSON responses to response.json
files within the same directories as their corresponding requests.

To accomplish this, we adjust the sentinel function binding resp-path to
point to the response.json file located in req-dir. The resp response is en-
coded and written similarly to the requests, using json-encoding-pretty-
print set to t for improved readability.

(lambda (process event)
(if (not (string= event "finished\n"))

(message "Error")
(let* ((resp (with-current-buffer (process-buffer process)

(goto-char (point-min))
(chatgpt-json-read)))

(response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json"))
(json-encoding-pretty-print t))

52

(write-region (json-encode resp) nil resp-path)
(chatgpt-callback prompt response))

(kill-buffer (process-buffer process))))

When executing chatgpt-send with the "Hello!" prompt, it stores the
corresponding response in /home/tony/chatgpt-emacs/requests/0xI4Yw/response.json.

10.5 Refactoring chatgpt-send with chatgpt-json-encode

To streamline our encoding process, we define a new function, chatgpt-
json-encode, to handle JSON encoding with pretty printing.

(defun chatgpt-json-encode (object)
(let ((json-encoding-pretty-print t))

(json-encode object)))

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(make-directory chatgpt-dir t)
(let* (...)

(message "chatgpt: %s" req-dir)
(write-region (chatgpt-json-encode req) nil req-path)
(make-process
...
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let* (...)
(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response))

(kill-buffer (process-buffer process)))))))

10.6 Adding Links to Request Directories

Finally, we update the chatgpt-callback function to include links to the
request directories when appending prompts and responses to the buffer.

(defun chatgpt-callback (prompt response req-dir)
"Append PROMPT and RESPONSE to the prompt buffer with a link to REQ-DIR."

53

(with-current-buffer (get-buffer-create "*chatgpt[requests]*")
(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

"<!-- [](" req-dir ") -->\n\n"
"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n")))

We then pass the req-dir argument correctly to chatgpt-callback
function in the sentinel function:

(defun chatgpt-send ()
...
(let* (...

(temporary-file-directory chatgpt-dir)
(req-dir (file-name-as-directory (make-temp-file nil t)))
...)

...
(make-process
...
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let* (...)
(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))

(kill-buffer (process-buffer process)))))))

When executing chatgpt-send with the prompt "Hello!", the buffer
chatgpt[requests] includes a link to the request directory:

Request

<!-- [](/home/tony/chatgpt-emacs/requests/Xb7cAy/) -->

Prompt

Hello!

54

Response

Hi there! How can I assist you today?

In this lesson, we have learned to save all requests and their corresponding
responses to disk. In the next lesson, we will implement a command to
display the prompt buffer at the bottom of the frame.

11 The Prompt Buffer

In this lesson, we will implement the chatgpt command to display and select
the prompt buffer at the bottom of the frame. We will also define chatgpt-
mode and apply it within the prompt buffer.

11.1 Displaying the Prompt Buffer with chatgpt

Previously, we utilized the buffer *chatgpt* to enter prompts for OpenAI.
We will continue using this buffer but will replace the switch-to-buffer
command with our new chatgpt command, which displays the buffer at the
bottom of the frame.

(defun chatgpt ()
"Display and select the prompt buffer."
(interactive)
(let ((buff (get-buffer-create "*chatgpt*")))

(select-window
(display-buffer-at-bottom
buff '(display-buffer-below-selected (window-height . 6))))))

The display-buffer-at-bottom function opens the specified buffer at
the bottom of the frame and returns the associated window. We then use
select-window to select that window.

11.2 Defining chatgpt-mode

We derive chatgpt-mode from markdown-mode for the prompt buffer:

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"ChatGPT mode.")

55

To activate chatgpt-mode in the prompt buffer, we invoke it within the
chatgpt command after selecting the window:

(defun chatgpt ()
"Display and select the prompt buffer."
(interactive)
(let ((buff (get-buffer-create "*chatgpt*")))

(select-window
(display-buffer-at-bottom
buff '(display-buffer-below-selected (window-height . 6))))

(chatgpt-mode)))

Upon calling chatgpt, the *chatgpt* buffer will appear at the bottom
of the frame. By evaluating major-mode in the minibuffer (using the eval-
expression command) we can verify that the active major mode is chatgpt-
mode.

11.3 Introducing chatgpt-model Variable

Next, we introduce the chatgpt-model variable to use in the chatgpt-
request function, replacing the previous hardcoded gpt-4o model string:

(defvar chatgpt-model "gpt-4o"
"The OpenAI model to use.")

(defun chatgpt-request (prompt)
"Return an OpenAI request with PROMPT."
`(:model ,chatgpt-model

:messages ,(vector `(:role "user" :content ,prompt)))

For example:

(let ((chatgpt-model "gpt-4o"))
(chatgpt-request "foo"))

;; (:model "gpt-4o" :messages [(:role "user" :content "foo")])
(let ((chatgpt-model "gpt-4o-mini"))

(chatgpt-request "foo"))
;; (:model "gpt-4o-mini" :messages [(:role "user" :content "foo")])

56

11.4 Mode Line of the Prompt Buffer

We enhance the mode line in the prompt buffer to display the currently
selected chatgpt-model. To do so, we modify chatgpt-mode to set mode-
line-format accordingly:

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"Mode for interacting with ChatGPT."
(setq mode-line-format

'(" "
mode-line-buffer-identification
" "
chatgpt-model
" "
mode-line-misc-info)))

Once chatgpt-mode is activated in the prompt buffer, the mode line will
display:

chatgpt gpt-4o

Note that the mode-line-misc-info variable allows other commands or
minor modes to append additional information to the mode line via global-
mode-string.

11.5 Executing chatgpt-mode Once

Let’s enhance the existing chatgpt command to ensure that chatgpt-mode
is invoked only when the *chatgpt* buffer is created for the first time. Cur-
rently, chatgpt-mode is executed every time we call the chatgpt function,
which is unnecessary.

We modify the function to check for the buffer’s existence using get-
buffer. If the *chatgpt* buffer does not exist at the time chatgpt is called,
we enable chatgpt-mode.

Here’s the revised code:

(defun chatgpt ()
"Display and Select the prompt buffer."
(interactive)
(let* ((buff-name "*chatgpt*")

57

(buff-p (get-buffer buff-name))
(buff (get-buffer-create buff-name)))

(select-window
(display-buffer-at-bottom
buff '(display-buffer-below-selected (window-height . 6))))

(when (not buff-p) (chatgpt-mode))))

This modification ensures that chatgpt-mode is only activated when cre-
ating the buffer for the first time.

11.6 Creating chatgpt-dir in chatgpt-mode

We can further improve our implementation by creating the chatgpt-dir in
the chatgpt-mode definition instead of in the chatgpt-send function. This
ensures the directory is created only once if it doesn’t exist yet. So we remove
the call to make-directory in chatgpt-send and add it to chatgpt-mode:

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"ChatGPT mode."
(setq mode-line-format

'(" "
mode-line-buffer-identification
" "
chatgpt-model
" "
mode-line-misc-info))

(make-directory chatgpt-dir t))

11.7 Defining chatgpt-mode-map keymap

Lastly, we bind the C-c C-c key combination to the chatgpt-send command
within the chatgpt-mode-map keymap:

(defvar chatgpt-mode-map
(let ((map (make-sparse-keymap)))

(define-key map (kbd "C-c C-c") 'chatgpt-send)
map)

"Keymap for `chatgpt-mode'.")

To apply these changes in our current Emacs session, we call the chatgpt
command to access the prompt buffer and activate chatgpt-mode.

58

11.8 chatgpt.el

The current implementation of the chatgpt.el package is as follows:

;;; chatgpt.el --- Simple ChatGPT integration -*- lexical-binding: t; -*-

(require 'json)
(require 'markdown-mode)

(defvar chatgpt-api-key
"sk-proj-7pQDxN...w-D40A"
"OpenAI API key.")

(defvar chatgpt-dir "/home/tony/chatgpt-emacs/requests/"
"Request directory.")

(defun chatgpt-json-read ()
(let ((json-key-type 'keyword)

(json-object-type 'plist)
(json-array-type 'vector))

(json-read)))

(defun chatgpt-json-encode (object)
(let ((json-encoding-pretty-print t))

(json-encode object)))

(defun chatgpt-command (req-path)
"Return the curl command."
(format
(concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer %s' "
"-d @%s")

chatgpt-api-key req-path))

(defvar chatgpt-model "gpt-4o"
"OpenAI model.")

(defun chatgpt-request (prompt)
"Return an OpenAI request with PROMPT."
`(:model ,chatgpt-model

59

:messages ,(vector `(:role "user" :content ,prompt))))

(defun chatgpt-callback (prompt response req-dir)
"Append PROMPT and RESPONSE to the prompt buffer with a link to REQ-DIR."
(let ((buff (get-buffer-create "*chatgpt[requests]*")))

(with-current-buffer buff
(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

"<!-- [](" req-dir ") -->\n\n"
"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n"))))

(defun chatgpt-send ()
"Send a request to OpenAI."
(interactive)
(let* ((prompt (buffer-string))

(req (chatgpt-request prompt))
(temporary-file-directory chatgpt-dir)
(req-dir (file-name-as-directory (make-temp-file nil t)))
(req-path (concat req-dir "request.json"))
(command (chatgpt-command req-path)))

(message "chatgpt: %s" req-dir)
(write-region (chatgpt-json-encode req) nil req-path)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let* ((resp (with-current-buffer (process-buffer process)
(goto-char (point-min))
(chatgpt-json-read)))

(response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json")))

(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))

(kill-buffer (process-buffer process)))))))

60

(defvar chatgpt-mode-map
(let ((map (make-sparse-keymap)))

(define-key map (kbd "C-c C-c") 'chatgpt-send)
map)

"Keymap of `chatgpt-mode'.")

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"ChatGPT mode."
(setq mode-line-format

'(" "
mode-line-buffer-identification
" "
chatgpt-model
" "
mode-line-misc-info))

(make-directory chatgpt-dir t))

(defun chatgpt ()
"Display and Select the prompt buffer."
(interactive)
(let* ((buff-name "*chatgpt*")

(buff-p (get-buffer buff-name))
(buff (get-buffer-create buff-name)))

(select-window
(display-buffer-at-bottom
buff '(display-buffer-below-selected (window-height . 6))))

(when (not buff-p) (chatgpt-mode))))

(provide 'chatgpt)

12 Making the response buffer pop up upon receipt

In this lesson, we will adjust the chatgpt-send and chatgpt-callback func-
tions. The goal is to modify chatgpt-send so that it clears the prompt buffer
upon sending a request, and to ensure that the *chatgpt[requests]* buffer
displaying prompts and responses opens once a response is received from
OpenAI.

61

12.1 Refactoring chatgpt-send into chatgpt-send-request

To implement these changes, we first refactor the chatgpt-send function
into two distinct functions: chatgpt-send and chatgpt-send-request. The
chatgpt-send-request function directly accepts the prompt as an argu-
ment, while the modified chatgpt-send function retrieves the prompt text
from the current buffer and pass it to chatgpt-send-request.

(defun chatgpt-send-request (prompt)
"Send the request with PROMPT to OpenAI."
(let* ((req (chatgpt-request prompt))

(temporary-file-directory chatgpt-dir)
(req-dir (file-name-as-directory (make-temp-file nil t)))
(req-path (concat req-dir "request.json"))
(command (chatgpt-command req-path)))

(message "chatgpt: %s" req-dir)
(write-region (chatgpt-json-encode req) nil req-path)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(message "Error")

(let* ((resp (with-current-buffer (process-buffer process)
(goto-char (point-min))
(chatgpt-json-read)))

(response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json")))

(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))

(kill-buffer (process-buffer process)))))))

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
(chatgpt-send-request (buffer-string)))

62

12.2 Deleting The Prompt Buffer window

Next, we enhance the chatgpt-send function to delete the prompt buffer’s
contents and delete its window if more than one window is open in the Emacs
frame.

We utilize erase-buffer to clear the current buffer and window-list to
check the count of visible windows.

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
(chatgpt-send-request (buffer-string))
(erase-buffer)
(when (> (length (window-list)) 1)

(delete-window)))

Here are two examples of window-list output when 1 and 2 windows
are open:

(window-list)
;; (#<window 1471 on chatgpt.el>)
(window-list)
;; (#<window 1471 on chatgpt.el> #<window 1503 on *chatgpt*>)

12.3 Ensuring the Response Buffer is Displayed

Currently, we need to manually switch to the *chatgpt[requests]* buffer
to view responses. We will modify the chatgpt-callback function to auto-
matically display this buffer and position the latest response at the top.

By using display-buffer, we create a new window for the response
buffer and, within the body of with-selected-window macro, we scroll to
the last ## Response heading, ensuring it appears at the top of the view.

(defun chatgpt-callback (prompt response req-dir)
"Append PROMPT and RESPONSE to the prompt buffer with a link to REQ-

DIR."
(let ((buff (get-buffer-create "*chatgpt[requests]*")))

(with-current-buffer buff
(markdown-mode)

63

(goto-char (point-max))
(insert "# Request\n\n"

"<!-- [](" req-dir ") -->\n\n"
"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n"))

(with-selected-window (display-buffer buff nil)
(goto-char (point-max))
(re-search-backward "^## Response")
(recenter-top-bottom 0))))

12.4 Adding Notifications

Finally, we implement notifications in the echo area for when requests are
sent and responses received from OpenAI.

(defun chatgpt-callback (prompt response req-dir)
"Append PROMPT and RESPONSE to the prompt buffer with a link to REQ-DIR."
(let ((buff (get-buffer-create "*chatgpt[requests]*")))

...
(message "Response received from OpenAI.")))

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
...
(message "Request sent to OpenAI."))

This streamlined approach enhances the functionality we are implement-
ing within our Emacs chat interface with OpenAI, facilitating improved user
experience and interaction.

13 Handling API Errors

In this lesson, we will address how to manage API errors returned by OpenAI.

13.1 Signaling API Errors

An incorrect model specified in a request to OpenAI will trigger an API
error. Let’s set the chatgpt-model variable to a nonexistent model:

(setq chatgpt-model "foo")

64

Now, when we send the request "Hello!" using the chatgpt-send com-
mand, the following error is displayed in the echo area:

error in process sentinel: Wrong type argument: char-or-string-p, nil

This error arises from the sentinel function within the chatgpt-send-
request function. To gather more details, we activate the debugger with
the toggle-debug-on-error command.

Upon resending the "Hello!" request, we enter the debugger with the
following stack trace:

Debugger entered--Lisp error: (wrong-type-argument char-or-string-
p nil)

insert("# Request\n\n" ... "## Response\n\n" nil "\n\n")
...
chatgpt-callback(#("Hello!" 0 6 (fontified t)) nil "/home/tony/chatgpt-

emacs/requests/J2jFKb/")
...

Here, we notice that a nil value is being inserted into a buffer in the
chatgpt-callback function. Specifically, the response parameter is nil.
In the chatgpt-callback function body, this is evident:

(defun chatgpt-callback (prompt response req-dir)
"..."
(let ((buff (get-buffer-create "*chatgpt[requests]*")))

(with-current-buffer buff
...
(insert "# Request\n\n"

...
"## Response\n\n" response "\n\n"))

...))

Examining the sentinel function in chatgpt-send-request, we see the
response is derived from the expression (map-nested-elt resp [:choices
0 :message :content]), where resp represents the JSON response con-
verted to an Emacs Lisp object. The issue stems from the JSON response
received from OpenAI.

(lambda (process event)
(if (not (string= event "finished\n"))

65

(message "Error")
(let* ((resp (with-current-buffer (process-buffer process)

(goto-char (point-min))
(chatgpt-json-read)))

(response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json")))

(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))

(kill-buffer (process-buffer process))))

Upon inspecting the response file located at /home/tony/chatgpt-emacs/requests/J2jFKb/,
we discover that it contains an error field rather than a choices array, in-
dicating that there was an API error. This explains why response was nil:
the response from OpenAI did not include the expected path [:choices 0
:message :content].

{
"error": {

"message": "The model `foo` does not exist or you do
not have acces to it.",

"type": "invalid_request_error",
"param": null,
"code": "model_not_found"

}
}

To handle this scenario, we modify the sentinel function to check for the
presence of an :error key in resp. If found, we bind api-error to its value
and signal an api-error with :error set to api-error. Otherwise, we will
proceed as usual by writing the response to disk and invoking chatgpt-
callback.

(lambda (process event)
(if (not (string= event "finished\n"))

(message "Error")
(let* ((resp (with-current-buffer (process-buffer process)

(goto-char (point-min))
(chatgpt-json-read))))

(if-let ((api-error (plist-get resp :error)))
(error "%S" `(:type "api-error" :error ,api-error))

66

(let ((response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json")))

(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))))

(kill-buffer (process-buffer process))))

We can test this by issuing chatgpt-send while the model remains incor-
rect. The error message displayed in the echo area will now provide detailed
information rather than the generic error:

if: (:type "api-error" :error (:message "The model `foo`
does not exist or you do not have access to it." :type
"invalid_request_error" :param nil :code "model_not_found"))

Next, we can set the chatgpt-model to a valid model:

(setq chatgpt-model "gpt-4o")

By sending a "Hello!" request again, we should see the *chatgpt[requests]*
buffer populated with this response:

Request

<!-- [](/home/tony/chatgpt-emacs/requests/retcdg/) -->

Prompt

Hello!

Response

Hello! How can I assist you today?

13.2 Saving API Errors

While signaling API errors is valuable, saving these errors for future reference
is even more beneficial. Therefore, we adjust the sentinel function to write
the error to disk. We store the error in a file named error.json within the
req-dir directory before signaling the error:

67

(lambda (process event)
(if (not (string= event "finished\n"))

(message "Error")
(let* (...)

(if-let ((api-error (plist-get resp :error)))
(let ((err `(:type "api-error" :error ,api-error))

(err-path (concat req-dir "error.json")))
(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

...))
(kill-buffer (process-buffer process))))

13.3 Signaling and Saving Process Errors

Next, we implement a mechanism to handle and save errors that arise from
process status changes. Currently, when an event other than "finished"
occurs, we simply print "Error". We now enhance this to save the error
within the corresponding request directory and signal the error. This is
similar to handling API errors, except the error will be of type process-
error, with the :error key containing the triggering event information.

(lambda (process event)
(if (not (string= event "finished\n"))

(let ((err `(:type "process-error" :error (:event ,event)))
(err-path (concat req-dir "error.json")))

(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

...))

To test our changes to chatgpt-send-request, we temporarily modify
the chatgpt-send function to immediately terminate the process using the
kill-process function. This allows us to evaluate the new execution path:

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
(kill-process (chatgpt-send-request (buffer-string)))
(erase-buffer)
(when (> (length (window-list)) 1)

(delete-window))
(message "Request sent to OpenAI."))

68

After invoking the chatgpt-send command with the prompt "Hello!",
the following error is signaled in the echo area:

(:type "process-error" :error (:event "killed\n"))

Additionally, we can confirm the request directory from the *Messages*
buffer:

chatgpt: /home/tony/chatgpt-emacs/requests/Ot8tMl/
Wrote /home/tony/chatgpt-emacs/requests/Ot8tMl/request.json
Request sent to OpenAI.
Wrote /home/tony/chatgpt-emacs/requests/Ot8tMl/error.json
let: (:type "process-error" :error (:event "killed\n"))

We can also verify that the error file at /home/tony/chatgpt-emacs/requests/Ot8tMl/error.json
contains the following JSON object:

{
"type": "process-error",
"error": {

"event": "killed\n"
}

}

Finally, we revert the chatgpt-send function to its original state:

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
(chatgpt-send-request (buffer-string))
(erase-buffer)
(when (> (length (window-list)) 1)

(delete-window))
(message "Request sent to OpenAI."))

13.4 chatgpt.el

The current implementation of the chatgpt.el package is as follows:

;;; chatgpt.el --- Simple ChatGPT integration -*- lexical-binding: t; -*-

(require 'json)

69

(require 'markdown-mode)

(defvar chatgpt-api-key
"sk-proj-7pQDxN...w-D40A"
"OpenAI API key.")

(defvar chatgpt-dir "/home/tony/chatgpt-emacs/requests/"
"Request directory.")

(defun chatgpt-json-read ()
(let ((json-key-type 'keyword)

(json-object-type 'plist)
(json-array-type 'vector))

(json-read)))

(defun chatgpt-json-encode (object)
(let ((json-encoding-pretty-print t))

(json-encode object)))

(defun chatgpt-command (req-path)
"Return the curl command."
(format
(concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer %s' "
"-d @%s")

chatgpt-api-key req-path))

(defvar chatgpt-model "gpt-4o"
"OpenAI model.")

(defun chatgpt-request (prompt)
"Return an OpenAI request with PROMPT."
`(:model ,chatgpt-model

:messages ,(vector `(:role "user" :content ,prompt))))

(defun chatgpt-callback (prompt response req-dir)
"Append PROMPT and RESPONSE to the prompt buffer with a link to REQ-DIR."
(let ((buff (get-buffer-create "*chatgpt[requests]*")))

(with-current-buffer buff

70

(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

"<!-- [](" req-dir ") -->\n\n"
"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n"))

(with-selected-window (display-buffer buff nil)
(goto-char (point-max))
(re-search-backward "^## Response")
(recenter-top-bottom 0))

(message "Response received from OpenAI.")))

(defun chatgpt-send-request (prompt)
"Send the request with PROMPT to OpenAI."
(let* ((req (chatgpt-request prompt))

(temporary-file-directory chatgpt-dir)
(req-dir (file-name-as-directory (make-temp-file nil t)))
(req-path (concat req-dir "request.json"))
(command (chatgpt-command req-path)))

(message "chatgpt: %s" req-dir)
(write-region (chatgpt-json-encode req) nil req-path)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(let ((err `(:type "process-error" :error (:event ,event)))

(err-path (concat req-dir "error.json")))
(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

(let* ((resp (with-current-buffer (process-buffer process)
(goto-char (point-min))
(chatgpt-json-read))))

(if-let ((api-error (plist-get resp :error)))
(let ((err `(:type "api-error" :error ,api-error))

(err-path (concat req-dir "error.json")))
(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

71

(let ((response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json")))

(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))))

(kill-buffer (process-buffer process)))))))

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
(chatgpt-send-request (buffer-string))
(erase-buffer)
(when (> (length (window-list)) 1)

(delete-window))
(message "Request sent to OpenAI."))

(defvar chatgpt-mode-map
(let ((map (make-sparse-keymap)))

(define-key map (kbd "C-c C-c") 'chatgpt-send)
map)

"Keymap of `chatgpt-mode'.")

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"ChatGPT mode."
(setq mode-line-format

'(" "
mode-line-buffer-identification
" "
chatgpt-model
" "
mode-line-misc-info))

(make-directory chatgpt-dir t))

(defun chatgpt ()
"Display and Select the prompt buffer."
(interactive)
(let* ((buff-name "*chatgpt*")

(buff-p (get-buffer buff-name))
(buff (get-buffer-create buff-name)))

(select-window
(display-buffer-at-bottom

72

buff '(display-buffer-below-selected (window-height . 6))))
(when (not buff-p) (chatgpt-mode))))

(provide 'chatgpt)

14 Timestamp Files

In our ongoing development of the package, an essential feature we need is
the capability to navigate the prompt history. Specifically, we want to enable
users to retrieve previous prompts sent to OpenAI by using keyboard short-
cuts like M-p for previous prompts and M-n for the next. In the upcoming
lessons, we will implement this feature, starting with our discussion on using
timestamp files.

14.1 Purpose of Timestamp Files

To facilitate prompt history navigation, we must organize previous prompts
chronologically. For this, we will utilize timestamp files, which we will elab-
orate on shortly. First, let’s explore the reason for this approach.

Examining the JSON response in the response.json file located at
/home/tony/chatgpt-emacs/requests/zsewR8/, we note that it contains
a created field with a timestamp:

{
"id": "chatcmpl-B8UAwZapHTpsUexLppYeadC0sRG2v",
"object": "chat.completion",
"created": 1741362318,
"model": "gpt-4o-2024-08-06",
"choices": [...],
...

}

While we could theoretically use this timestamp to sort requests, this
method would result in reading numerous files if the request directory con-
tains hundreds or thousands of them, leading to considerable inefficiency.
Moreover, requests that lead to API or processing errors do not generate a
response.json file, further complicating sorting.

Instead, we will create a timestamp file for each request sent to OpenAI.
This file will have its timestamp embedded in the filename as follows:

/home/tony/chatgpt-emacs/requests/zsewR8/timestamp-1741592528.2623844

73

This approach allows us to sort the requests in the chatgpt-dir direc-
tory efficiently using the directory-files-recursively function, without
needing to read individual files. We will still need to read each request file
to retrieve the prompts.

14.2 Writing Timestamp Files

We modify the chatgpt-send-request function to create a timestamp file
alongside each request sent to OpenAI. We define the path for the timestamp
file using format and time-to-seconds, which gives the current time as a
float representing seconds since the epoch. We then create the file with the
write-region function:

(defun chatgpt-send-request (prompt)
"Send the request with PROMPT to OpenAI."
(let* (...

(timestamp-path
(format "%stimestamp-%s" req-dir (time-to-seconds)))

(command (chatgpt-command req-path)))
(message "chatgpt: %s" req-dir)
(write-region (chatgpt-json-encode req) nil req-path)
(write-region "" nil timestamp-path)
(make-process ...)))

By invoking chatgpt-send-request in the prompt buffer with the in-
put "Hello!", a timestamp file is created alongside the request.json and
response.json files:

/home/tony/chatgpt-emacs/requests/JVjcXV:
drwx------ 2 tony tony 4.0K Mar 10 10:50 .
drwxrwxr-x 5 tony tony 4.0K Mar 10 10:50 ..
-rw-rw-r-- 1 tony tony 101 Mar 10 10:50 request.json
-rw-rw-r-- 1 tony tony 807 Mar 10 10:50 response.json
-rw-rw-r-- 1 tony tony 0 Mar 10 10:50 timestamp-1741600223.2159884

Calling chatgpt-send in the prompt buffer, we send the request with
the prompt "Hello!" to OpenAI and a timestamp file is created alongside
the request.json and response.json files:

/home/tony/chatgpt-emacs/requests/JVjcXV:
drwx------ 2 tony tony 4.0K Mar 10 10:50 .

74

drwxrwxr-x 5 tony tony 4.0K Mar 10 10:50 ..
-rw-rw-r-- 1 tony tony 101 Mar 10 10:50 request.json
-rw-rw-r-- 1 tony tony 807 Mar 10 10:50 response.json
-rw-rw-r-- 1 tony tony 0 Mar 10 10:50 timestamp-1741600223.2159884

14.3 Defining the chatgpt-timestamp Function

Next, we implement the chatgpt-timestamp function, which retrieves the
timestamp number from a specified timestamp file. This will assist in orga-
nizing prompts chronologically.

(defun chatgpt-timestamp (file)
"Return the timestamp number from FILE."
(string-to-number (nth 1 (string-split file "timestamp-"))))

For example:

(let ((file "/home/tony/chatgpt-emacs/requests/JVjcXV/timestamp-1741600223.2159884"))
(chatgpt-timestamp file))

;; => 1741600223.2159884

For Emacs versions prior to 29.1, utilize split-string in place of string-
split.

14.4 Defining the chatgpt-requests Function

Finally, we create the chatgpt-requests function, which returns a sorted
list of requests in the chatgpt-dir directory, prioritizing the most recent
entries.

First, we list the timestamp files with directory-files-recursively:

(directory-files-recursively chatgpt-dir "timestamp.*")
;; ("/home/tony/chatgpt-emacs/requests/JVjcXV/timestamp-1741600223.2159884"
;; "/home/tony/chatgpt-emacs/requests/wVcThg/timestamp-1741610135.553578"
;; "/home/tony/chatgpt-emacs/requests/wavggx/timestamp-1741610117.0591946")

Next, we sort these files using seq-sort in conjunction with our chatgpt-
timestamp function, ensuring the most recent timestamps come first:

(let ((files (directory-files-recursively chatgpt-dir "timestamp.*")))
(seq-sort
(lambda (f1 f2) (> (chatgpt-timestamp f1) (chatgpt-timestamp f2)))

75

files))
;; ("/home/tony/chatgpt-emacs/requests/wVcThg/timestamp-1741610135.553578"
;; "/home/tony/chatgpt-emacs/requests/wavggx/timestamp-1741610117.0591946"
;; "/home/tony/chatgpt-emacs/requests/JVjcXV/timestamp-1741600223.2159884")

After that, we extract the request directories by trimming the file paths:

(let ((files (directory-files-recursively chatgpt-dir "timestamp.*")))
(mapcar (lambda (f) (string-trim-right f "timestamp.*"))

(seq-sort
(lambda (f1 f2) (> (chatgpt-timestamp f1) (chatgpt-timestamp f2)))
files)))

;; ("/home/tony/chatgpt-emacs/requests/wVcThg/"
;; "/home/tony/chatgpt-emacs/requests/wavggx/"
;; "/home/tony/chatgpt-emacs/requests/JVjcXV/")

We can then consolidate the above logic into the chatgpt-requests func-
tion:

(defun chatgpt-requests ()
"Return a sorted list of the requests in `chatgpt-dir'.

The most recent requests are listed first."
(let ((files (directory-files-recursively chatgpt-dir "timestamp.*")))

(mapcar (lambda (f) (string-trim-right f "timestamp.*"))
(seq-sort
(lambda (f1 f2)

(> (chatgpt-timestamp f1) (chatgpt-timestamp f2)))
files))))

We can test the chatgpt-requests function like so:

(chatgpt-requests)
;; ("/home/tony/chatgpt-emacs/requests/wVcThg/"
;; "/home/tony/chatgpt-emacs/requests/wavggx/"
;; "/home/tony/chatgpt-emacs/requests/JVjcXV/")

15 Overview of the Ring Package

In this lesson, we will explore the fundamentals of the built-in ring package,
which is useful for managing histories. We will leverage this package to
implement a the prompt history feature of chatgpt.el package.

76

With the ring package, we can efficiently add or remove elements and,
given any element, easily access its previous or next neighbor.

15.1 Creating Rings and Inserting Elements

In this section, we demonstrate two methods to create rings and two methods
for inserting elements.

First, we create a ring variable r with a size of 3 using the make-ring
function:

(setq r (make-ring 3)) ;; (0 0 . [nil nil nil])

We confirm that the ring is empty by checking:

(ring-empty-p r) ;;

Next, we insert three elements into the ring using the ring-insert func-
tion:

(ring-insert r "foo-1") ;; "foo-1"
(ring-insert r "foo-2") ;; "foo-2"
(ring-insert r "foo-3") ;; "foo-3"

To view the elements in the ring, we can use the ring-elements function.
For our ring r, it returns the following list, "foo-1" being the oldest element
and "foo-3" the newest:

(ring-elements r) ;; ("foo-3" "foo-2" "foo-1")

Next, we insert a fourth element, "foo-4", into this full ring:

(ring-insert r "foo-4")

Listing the elements again, we can observe that the oldest element "foo-
1" has been removed, the ring rotated, and "foo-4" is now the newest ele-
ment:

(ring-elements r) ;; ("foo-4" "foo-3" "foo-2")

Now, let’s explore another approach for creating rings and inserting ele-
ments that allows for ring enlargement without dropping the oldest element.

We initialize the ring r with three elements using ring-convert-sequence-
to-ring, which converts a sequence into a ring:

77

(setq r (ring-convert-sequence-to-ring '("foo-3" "foo-2" "foo-1")))

We can list r elements:

(ring-elements r) ;; ("foo-3" "foo-2" "foo-1")

Now, we use ring-insert+extend to insert "foo-4" while enlarging the
ring instead of discarding the oldest element:

(ring-insert+extend r "foo-4" t) ;; "foo-4"

The updated elements in ring r now show that the oldest element remains
the same, and the ring has been enlarged:

(ring-elements r) ;; ("foo-4" "foo-3" "foo-2" "foo-1")

15.2 Accessing Ring Elements

In this section, we learn how to access elements in a ring.
First, we define the ring r again with three elements:

(setq r (ring-convert-sequence-to-ring '("foo-3" "foo-2" "foo-1")))

We can confirm the elements in ring r as follows:

(ring-elements r) ;; ("foo-3" "foo-2" "foo-1")

Now, we use the ring-ref function to access elements by their index:

(ring-ref r 0) ;; "foo-3"
(ring-ref r 1) ;; "foo-2"

To retrieve the next or previous element for a given value, we use the
ring-next and ring-previous functions:

(ring-next r "foo-2") ;; "foo-1"
(ring-previous r "foo-2") ;; "foo-3"

If we attempt to get the next element of the oldest entry, ring-next
wraps back to the newest element:

(ring-next r "foo-1") ;; "foo-3"

78

Conversely, attempting to get the previous element of the newest entry
wraps back to the oldest:

(ring-previous r "foo-3") ;; "foo-1"

Lastly, note that trying to access the next or previous element of a non-
existent item raises an error:

(ring-next r "not-in-r")
;; ring-next: Item is not in the ring: ‘not-in-r’

In the subsequent lesson, we will apply the concepts from this lesson and
the previous one to implement the prompt history feature.

16 Implementing Prompt History Feature

In this session, we’ll integrate a prompt history feature, allowing us to navi-
gate between previous prompts using the M-p and M-n keystrokes.

16.1 Binding M-p and M-n in chatgpt-mode-map

We define the commands chatgpt-previous and chatgpt-next, binding
them to M-p and M-n respectively in chatgpt-mode-map. Initially, these
commands will output "prev prompt" and "next prompt" in the echo area.

(defun chatgpt-previous ()
"Replace current buffer content with previous prompt."
(interactive)
(message "prev prompt"))

(defun chatgpt-next ()
"Replace current buffer content with next prompt."
(interactive)
(message "next prompt"))

(defvar chatgpt-mode-map
(let ((map (make-sparse-keymap)))

(define-key map (kbd "M-p") 'chatgpt-previous)
(define-key map (kbd "M-n") 'chatgpt-next)
(define-key map (kbd "C-c C-c") 'chatgpt-send)
map)

"Keymap of `chatgpt-mode'.")

79

16.2 Defining chatgpt-history and chatgpt-push

We introduce the chatgpt-history variable to store the history of request
directories, initializing it as an empty ring:

(defvar chatgpt-history (make-ring 0)
"Ring of request directories.")

Whenever a request is sent, its directory will be added to this ring via
the chatgpt-push function:

(defun chatgpt-push (req-dir)
"Push REQ-DIR into `chatgpt-history' ring."
(ring-insert+extend chatgpt-history req-dir t))

Now, we modify the chatgpt-send-request function to incorporate a
call to chatgpt-push, ensuring each request directory is recorded before
sending the request:

(defun chatgpt-send-request (prompt)
"Send the request with PROMPT to OpenAI."
(let* (...

(req (chatgpt-request prompt))
(req-dir (file-name-as-directory (make-temp-file nil t)))
...)

(chatgpt-push req-dir)
(make-process ...)))

We can confirm the functionality by checking that chatgpt-history
starts empty:

(ring-elements chatgpt-history) ;; nil

Then we enter foo-1 into the prompt buffer and press C-c C-c to submit
a request. After this, evaluating the following expression in the minibuffer
confirms that the chatgpt-history now includes one request directory:

(ring-elements chatgpt-history)
;; ("/home/tony/chatgpt-emacs/requests/w32X0a/")

Next, we repeat the process with the prompt foo-2. Upon evaluation,
checking the chatgpt-history again shows it contains two request directo-
ries:

80

(ring-elements chatgpt-history)
;; ("/home/tony/chatgpt-emacs/requests/utuN4O/"
;; "/home/tony/chatgpt-emacs/requests/w32X0a/")

16.3 Implementing the chatgpt-previous Command

Next, we redefine chatgpt-previous to update the prompt buffer with the
last used prompt instead of just printing a message. We introduce chatgpt-
request-dir, a variable to hold the request directory of the current prompt:

(defvar chatgpt-request-dir nil
"Request directory of the current prompt.")

Each time a request is sent, we reset this variable to nil. We modify
chatgpt-push accordingly:

(defun chatgpt-push (req-dir)
"Push REQ-DIR into `chatgpt-history' ring."
(setq chatgpt-request-dir nil)
(ring-insert+extend chatgpt-history req-dir t))

Let’s revisit the chatgpt-previous function:

(defun chatgpt-previous ()
"Replace current buffer content with previous prompt."
(interactive)
(let* ((req-dir (if (null chatgpt-request-dir)

(ring-ref chatgpt-history 0)
(ring-next chatgpt-history chatgpt-request-dir)))

(req (with-temp-buffer
(insert-file-contents (concat req-dir "request.json"))
(chatgpt-json-read)))

(prompt (map-nested-elt req [:messages 0 :content])))
(setq chatgpt-request-dir req-dir)
(erase-buffer)
(save-excursion (insert prompt))))

We begin by binding req-dir to the request directory associated with the
most recent request. If chatgpt-request-dir is nil, we use the ring-ref
function to access the latest entry from the chatgpt-history ring. Other-
wise, we obtain the next entry using ring-next.

81

Next, we bind req to the object that represents the request stored in
req-dir. Using the map-nested-elt function, we extract the prompt from
req.

Before updating the prompt buffer, we assign req-dir to the chatgpt-
request-dir variable. This ensures that the subsequent invocation of chatgpt-
previous will retrieve the next prompt in the chatgpt-history.

Finally, we clear the current buffer and insert the prompt value, which
reflects the previous request corresponding to chatgpt-request-dir. The
save-excursion function retains the cursor position at the beginning of the
buffer.

16.3.1 Testing the chatgpt-previous Command

Before testing it, we verify that the chatgpt-request-dir variable is set to
nil in the minibuffer.

In the prompt buffer, pressing M-p invokes the chatgpt-previous com-
mand, which updates the prompt buffer to display foo-2, the prompt of the
previous request. In the minibuffer we check that the chatgpt-request-dir
variable value has been updated:

chatgpt-request-dir ;; "/home/tony/chatgpt-emacs/requests/utuN4O/"

Pressing M-p again updates the prompt buffer to show foo-1. The
chatgpt-request-dir is again updated:

chatgpt-request-dir ;; "/home/tony/chatgpt-emacs/requests/w32X0a/"

Using the ring-elements function, we can confirm that chatgpt-history
contains two elements:

(ring-elements chatgpt-history)
;; ("/home/tony/chatgpt-emacs/requests/utuN4O/"
;; "/home/tony/chatgpt-emacs/requests/w32X0a/")

Now, pressing M-p once more in the prompt buffer updates it to show
foo-2 again. This behavior occurs because foo-1 is the oldest element in
the chatgpt-history ring, and ring-next wraps around to the most recent
element after reaching the oldest.

Next, we enter the prompt foo-3 in the prompt buffer and send it to
OpenAI by pressing C-c C-c. A subsequent check in the minibuffer confirms
that chatgpt-request-dir is reset to nil. Thus, pressing M-p now updates
the prompt buffer to display the last prompt, foo-3.

82

16.4 Handling Empty chatgpt-history

We successfully implemented the chatgpt-previous command, but we need
to address the scenario where the chatgpt-history ring is empty.

Let’s redefine the chatgpt-history variable as an empty ring with the
following code:

(defvar chatgpt-history (make-ring 0)
"Ring of the request directories.")

When we attempt to access a previous prompt using M-p, we receive an
error message:

Accessing an empty ring

To improve user experience, we modify the chatgpt-previous command
to check if the chatgpt-history ring is empty. If it is, we display a more
informative message in the echo area:

(defun chatgpt-previous ()
"Replace current buffer content with previous prompt."
(interactive)
(if (ring-empty-p chatgpt-history)

(message "`chatgpt-history' empty. Send a request first.")
...))

Now, when we press M-p in the prompt buffer with an empty chatgpt-
history, we receive the message:

`chatgpt-history' empty. Send a request first.

Following this prompt, we can send a request with the input foo-4 to
OpenAI. After sending the request, when we press M-p again in the prompt
buffer, it updates with foo-4, as expected.

16.5 Initializing chatgpt-history from Disk

The chatgpt-history ring currently contains request directories from the
ongoing Emacs session. However, it does not include requests from previ-
ous sessions stored in the chatgpt-dir directory. To address this, we will
initialize the chatgpt-history variable with those previously saved request
directories.

83

To achieve this, we define the chatgpt-history-set function. This func-
tion ensures that the chatgpt-dir directory exists, and it sets the chatgpt-
history variable to a ring containing the request directories retrieved from
chatgpt-dir, ordered with the most recent requests listed first. We use the
previously defined chatgpt-requests function alongside the ring-convert-
sequence-to-ring function.

Here’s the implementation of chatgpt-history-set:

(defun chatgpt-history-set ()
"Set `chatgpt-history' with request in `chatgpt-dir'."
(when (file-exists-p chatgpt-dir)

(setq chatgpt-history
(ring-convert-sequence-to-ring (chatgpt-requests)))))

To ensure that chatgpt-history is initialized only once during an Emacs
session—specifically, the first time the chatgpt command is invoked and the
chatgpt buffer is created—we will modify the chatgpt-mode definition.
This modification will include a call to the chatgpt-history-set function
to initialize the history at that point:

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"Major mode for ChatGPT interaction."
(setq mode-line-format

'(" "
mode-line-buffer-identification
" "
chatgpt-model
" "
mode-line-misc-info))

(make-directory chatgpt-dir t)
(chatgpt-history-set))

Now, after killing the *chatgpt* prompt buffer and calling the chat-
gpt command again, Emacs recreates the prompt buffer, invoking chatgpt-
mode, which subsequently calls chatgpt-history-set. This action popu-
lates chatgpt-history with request directories from the last three lessons
where we defined prompt history feature, as shown below:

chatgpt-history
;; (0 7 . ["/home/tony/chatgpt-emacs/requests/JVjcXV/"
;; "/home/tony/chatgpt-emacs/requests/wavggx/"

84

;; "/home/tony/chatgpt-emacs/requests/wVcThg/"
;; "/home/tony/chatgpt-emacs/requests/w32X0a/"
;; "/home/tony/chatgpt-emacs/requests/utuN4O/"
;; "/home/tony/chatgpt-emacs/requests/cOKJCK/"
;; "/home/tony/chatgpt-emacs/requests/vymuEI/"])

This structured approach ensures that all requests, regardless of session,
are accessible in the chatgpt-history.

16.6 Refactoring for Clean Code

We rename the chatgpt-previous command to chatgpt-prompt, modify its
signature to include a direction argument, and adjust its implementation
to handle updating the prompt buffer with the previous prompt or the next
prompt:

(defun chatgpt-prompt (direction)
"Replace current buffer content with DIRECTION prompt."
(interactive)
(if (ring-empty-p chatgpt-history)

(message "`chatgpt-history' empty. Send a request first.")
(let* ((req-dir

(if (null chatgpt-request-dir)
(ring-ref chatgpt-history 0)

(if (eq direction 'previous)
(ring-next chatgpt-history chatgpt-request-dir)

(ring-previous chatgpt-history chatgpt-request-dir))))
(req (with-temp-buffer

(insert-file-contents (concat req-dir "request.json"))
(chatgpt-json-read)))

(prompt (map-nested-elt req [:messages 0 :content])))
(setq chatgpt-request-dir req-dir)
(erase-buffer)
(save-excursion (insert prompt)))))

Finally we redefine the chatgpt-previous function and create the chatgpt-
next function using the chatgpt-prompt function:

(defun chatgpt-previous ()
"Replace current buffer content with next prompt."
(interactive)

85

(chatgpt-prompt 'previous))

(defun chatgpt-next ()
"Replace current buffer content with next prompt."
(interactive)
(chatgpt-prompt 'next))

This concludes the implementation of the prompt history feature.
In our next session, we will implement a waiting widget that will be

displayed in the mode line while awaiting a response from OpenAI.

16.7 chatgpt.el

The current implementation of the chatgpt.el package is as follows:

;;; chatgpt.el --- Simple ChatGPT integration -*- lexical-binding: t; -*-

(require 'json)
(require 'markdown-mode)

(defvar chatgpt-api-key
"sk-proj-7pQDxN...w-D40A"
"OpenAI API key.")

(defvar chatgpt-dir "/home/tony/chatgpt-emacs/requests/"
"Request directory.")

(defun chatgpt-json-read ()
(let ((json-key-type 'keyword)

(json-object-type 'plist)
(json-array-type 'vector))

(json-read)))

(defun chatgpt-json-encode (object)
(let ((json-encoding-pretty-print t))

(json-encode object)))

(defun chatgpt-command (req-path)
"Return the curl command."
(format
(concat "curl https://api.openai.com/v1/chat/completions "

86

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer %s' "
"-d @%s")

chatgpt-api-key req-path))

(defvar chatgpt-model "gpt-4o"
"OpenAI model.")

(defun chatgpt-request (prompt)
"Return an OpenAI request with PROMPT."
`(:model ,chatgpt-model

:messages ,(vector `(:role "user" :content ,prompt))))

(defun chatgpt-callback (prompt response req-dir)
"Append PROMPT and RESPONSE to the prompt buffer with a link to REQ-DIR."
(let ((buff (get-buffer-create "*chatgpt[requests]*")))

(with-current-buffer buff
(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

"<!-- [](" req-dir ") -->\n\n"
"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n"))

(with-selected-window (display-buffer buff nil)
(goto-char (point-max))
(re-search-backward "^## Response")
(recenter-top-bottom 0))

(message "Response received from OpenAI.")))

(defun chatgpt-send-request (prompt)
"Send the request with PROMPT to OpenAI."
(let* ((req (chatgpt-request prompt))

(temporary-file-directory chatgpt-dir)
(req-dir (file-name-as-directory (make-temp-file nil t)))
(req-path (concat req-dir "request.json"))
(timestamp-path (format "%stimestamp-%s" req-dir (time-to-seconds)))
(command (chatgpt-command req-path)))

(message "chatgpt: %s" req-dir)
(write-region (chatgpt-json-encode req) nil req-path)
(write-region "" nil timestamp-path)

87

(chatgpt-push req-dir)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

(if (not (string= event "finished\n"))
(let ((err `(:type "process-error" :error (:event ,event)))

(err-path (concat req-dir "error.json")))
(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

(let* ((resp (with-current-buffer (process-buffer process)
(goto-char (point-min))
(chatgpt-json-read))))

(if-let ((api-error (plist-get resp :error)))
(let ((err `(:type "api-error" :error ,api-error))

(err-path (concat req-dir "error.json")))
(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

(let ((response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json")))

(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))))

(kill-buffer (process-buffer process)))))))

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
(chatgpt-send-request (buffer-string))
(erase-buffer)
(when (> (length (window-list)) 1)

(delete-window))
(message "Request sent to OpenAI."))

(defun chatgpt-timestamp (file)
"Return the timestamp number associated with timestamp FILE."
(string-to-number (nth 1 (string-split file "timestamp-"))))

(defun chatgpt-requests ()

88

"Return a sorted list of the requests in `chatgpt-dir'.

The most recent requests are listed first."
(let ((files (directory-files-recursively chatgpt-dir "timestamp.*")))

(mapcar (lambda (f) (string-trim-right f "timestamp.*"))
(seq-sort
(lambda (f1 f2) (> (chatgpt-timestamp f1) (chatgpt-timestamp f2)))
files))))

(defvar chatgpt-request-dir nil
"Hold request directory of the current prompt.")

(defvar chatgpt-history (make-ring 0)
"Ring of the request directories.")

(defun chatgpt-history-set ()
"Set `chatgpt-history' with request in `chatgpt-dir'."
(when (file-exists-p chatgpt-dir)

(setq chatgpt-history (ring-convert-sequence-to-ring (chatgpt-requests)))))

(defun chatgpt-push (req-dir)
"Push REQ-DIR into `chatgpt-history' ring."
(setq chatgpt-request-dir nil)
(ring-insert+extend chatgpt-history req-dir t))

(defun chatgpt-prompt (direction)
"Replace current buffer content with DIRECTION prompt."
(interactive)
(if (ring-empty-p chatgpt-history)

(message "`chatgpt-history' empty. Send a request first.")
(let* ((req-dir (if (null chatgpt-request-dir)

(ring-ref chatgpt-history 0)
(if (eq direction 'previous)

(ring-next chatgpt-history chatgpt-request-dir)
(ring-previous chatgpt-history chatgpt-request-dir))))

(req (with-temp-buffer
(insert-file-contents (concat req-dir "request.json"))
(chatgpt-json-read)))

(prompt (map-nested-elt req [:messages 0 :content])))
(setq chatgpt-request-dir req-dir)

89

(erase-buffer)
(save-excursion (insert prompt)))))

(defun chatgpt-previous ()
"Replace current buffer content with next prompt."
(interactive)
(chatgpt-prompt 'previous))

(defun chatgpt-next ()
"Replace current buffer content with next prompt."
(interactive)
(chatgpt-prompt 'next))

(defvar chatgpt-mode-map
(let ((map (make-sparse-keymap)))

(define-key map (kbd "M-p") 'chatgpt-previous)
(define-key map (kbd "M-n") 'chatgpt-next)
(define-key map (kbd "C-c C-c") 'chatgpt-send)
map)

"Keymap of `chatgpt-mode'.")

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"ChatGPT mode."
(setq mode-line-format

'(" "
mode-line-buffer-identification
" "
chatgpt-model
" "
mode-line-misc-info))

(make-directory chatgpt-dir t)
(chatgpt-history-set))

(defun chatgpt ()
"Display and Select the prompt buffer."
(interactive)
(let* ((buff-name "*chatgpt*")

(buff-p (get-buffer buff-name))
(buff (get-buffer-create buff-name)))

(select-window

90

(display-buffer-at-bottom
buff '(display-buffer-below-selected (window-height . 6))))

(when (not buff-p) (chatgpt-mode))))

(provide 'chatgpt)

17 The Waiting Widget

In this lesson, we implement a waiting widget that appears in the mode line
while awaiting a response from OpenAI.

To achieve this, we define the chatgpt-mode-line-waiting function.
This function either starts a timer that updates the mode line with the string
"| ChatGPT" followed by a variable number of dots or stops this timer and
remove the waiting widget from the mode line. This is done by updating the
global-mode-string variable every 0.66 seconds. The timer is stored in the
chatgpt-timer variable.

(defvar chatgpt-timer nil "Timer for waiting widget in mode line")

(defun chatgpt-mode-line-waiting (action)
"Start or stop a waiting widget in mode line.

Accepted values for ACTION includes `start' and `stop'."
(pcase action

('start
(setq chatgpt-timer

(run-with-timer
0 0.66
(let ((idx 0))

(lambda ()
(progn

(setq global-mode-string
`(:eval

,(concat "| ChatGPT."
(make-string (mod idx 3) ?.))))

(force-mode-line-update 'all)
(cl-incf idx)))))))

('stop
(cancel-timer chatgpt-timer)
(setq chatgpt-timer nil)

91

(setq global-mode-string nil)
(force-mode-line-update 'all))))

Next, we modify the chatgpt-send-request function to incorporate calls
to chatgpt-mode-line-waiting. Before sending the request, we invoke this
function to initiate the chatgpt-timer. Upon receiving a response from
OpenAI, we also call this function to stop the timer in the sentinel function,
ensuring it is the first action executed:

(defun chatgpt-send-request (prompt)
"Send the request with PROMPT to OpenAI."
(let* (...)

...
(chatgpt-mode-line-waiting 'start)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

(chatgpt-mode-line-waiting 'stop)
(if (not (string= event "finished\n"))

...
...)))))

This implementation effectively manages the waiting widget within the
mode line, providing us with clear visual feedback while awaiting a response
from OpenAI.

18 Managing the API Key

In this lesson, we will focus on securely managing the OpenAI API key
within Emacs. Currently, the chatgpt-api-key variable is defined in the
chatgpt.el file. However, storing API keys in code is not advisable. Instead,
we can utilize the ~/.authinfo and ~/.authinfo.gpg files (the latter being
the encrypted version using GPG) to securely store our API keys.

This section outlines the process for retrieving the API key from these
files. We will provide an example using the non-encrypted file; however, the
code can be applied uniformly across both encrypted and non-encrypted file
methods.

92

18.1 Redefining the API Key Variable

First, we reset the chatgpt-api-key variable to nil:

(defvar chatgpt-api-key nil "OpenAI API key.")

18.2 Modifying the chatgpt-command Function

Next, we update the chatgpt-command function. This function checks if
chatgpt-api-key is nil. If it is, it fetches the API key from either ~/.au-
thinfo or ~/.authinfo.gpg using auth-source-pick-first-password and
then store it for future use:

(defun chatgpt-command (req-path)
"Return the curl command."
(when (null chatgpt-api-key)

(setq chatgpt-api-key
(auth-source-pick-first-password :host "openai")))

(format
(concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer %s' "
"-d @%s")

chatgpt-api-key req-path))

18.3 Adding the API Key to ~/.authinfo File

We add our OpenAI API key in ~/.authinfo with the following format:

machine openai password sk-proj-7pQDxN...w-D40A

18.4 Restarting Emacs for Changes to Take Effect

I don’t know why, but if we make changes to ~/.authinfo or ~/.authinfo.gpg
during our Emacs session, they will not be reflected immediately. To test,
we can evaluate the following which returns nil instead of our API key:

(auth-source-pick-first-password :host "openai") ;; nil

So we restart Emacs, open the chatgpt.el file, and evaluate it using M-x
eval-buffer.

93

18.5 Testing the Setup

Now, we invoke the chatgpt-command function. In the prompt buffer, we
enter the prompt foo, and press C-c C-c to send the request to OpenAI. We
then receive a response which confirms that the integration is functioning as
expected.

Finally, we verify that the chatgpt-api-key variable now contains the
API key from our ~/.authinfo file by evaluating it in the minibuffer.

19 chatgpt.el - Simple ChatGPT Emacs Integra-
tion

19.1 Overview

chatgpt.el is a simple Emacs package that allows you to interact with
OpenAI’s ChatGPT directly from within Emacs. It leverages the OpenAI
API to send prompts and receive responses.

19.2 Key Features

• Easy API Integration: Automatically retrieves your OpenAI API
key from ~/.authinfo.gpg (for secure storage) or from the plaintext
~/.authinfo file.

• Prompt History: Keeps track of your previous prompts, allowing
you to navigate back and forth through your request history pressing
M-p and M-n in the prompt buffer.

• Request Logging: Saves all requests and responses in the chatgpt-
dir directory (by default, ~/.emacs.d/chatgpt-requests/).

19.3 Get Started in Minutes

1. Add the directory containing chatgpt.el to your load-path and re-
quire the chatgpt package by adding the following lines to your init
file, ensuring to replace /path/to/chatgpt/ with the appropriate di-
rectory:

(add-to-list 'load-path "/path/to/chatgpt/")
(require 'chatgpt)

94

2. Store your OpenAI API key in either the ~/.authinfo.gpg file (en-
crypted with gpg) or the ~/.authinfo file (plaintext):

• After funding your OpenAI account ($5.00 is enough to get started),
create an OpenAI API key visiting https://platform.openai.
com/api-keys.

• Add the API key in the selected file as follows:

machine openai password <openai-api-key>

where <openai-api-key> is your API key.

• Restart Emacs to apply this change.

3. Call the command chatgpt to switch to *chatgpt* prompt buffer,

4. Enter your prompt,

5. Press C-c C-c to send your prompt to OpenAI API,

6. Finally, the response will asynchronously show up in a dedicated buffer
upon receipt.

Links:

• https://platform.openai.com

• https://platform.openai.com/api-keys

19.4 chatgpt.el

;;; chatgpt.el --- Simple ChatGPT client -*- lexical-binding: t; -*-
;;
;; Copyright (C) 2025 Tony Aldon
;;
;; Author: Tony Aldon <tony@tonyaldon.com>
;; Version: 1.0
;; Package-Requires: ((emacs "25.1"))
;; Homepage: https://tonyaldon.com
;;
;;; Commentary:
;;
;;;; Overview

95

https://platform.openai.com
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
https://platform.openai.com
https://platform.openai.com/api-keys

;;
;; chatgpt.el is a simple Emacs package that allows you to interact
;; with OpenAI's ChatGPT directly from within Emacs. It leverages the
;; OpenAI API to send prompts and receive responses.
;;
;;;; Key Features
;;
;; - Secure API Key Handling: Automatically retrieves your OpenAI API key
;; from ~/.authinfo.gpg for secure storage or from the plaintext
;; ~/.authinfo file.
;; - Prompt History: Keeps track of your previous prompts, allowing you
;; to navigate back and forth through your request history pressing `M-p'
;; and `M-n' in the prompt buffer.
;; - Request Logging: Saves all requests and responses in the
;; `chatgpt-dir' directory (by default, ~/.emacs.d/chatgpt-requests/).
;;
;;;; Get started in minutes
;;
;; 1) Add the directory containing chatgpt.el to your `load-path' and
;; require the chatgpt.el package by adding the following lines to
;; your init file, ensuring to replace /path/to/chatgpt/ with the
;; appropriate directory:
;;
;; (add-to-list 'load-path "/path/to/chatgpt/")
;; (require 'eden)
;;
;; 2) Store your OpenAI API key in either the ~/.authinfo.gpg file
;; (encrypted with gpg) or the ~/.authinfo file (plaintext):
;;
;; - After funding your OpenAI account (https://platform.openai.com)
;; ($5.00 is enough to get started), create an OpenAI API key
;; visiting https://platform.openai.com/api-keys.
;; - Add the API key in the selected file as follows:
;;
;; machine openai password <openai-api-key>
;;
;; where <openai-api-key> is your API key.
;;
;; - Restart Emacs to apply this change.
;;

96

;; 3) Call the command `chatgpt' to switch to *chatgpt* prompt buffer,
;; 4) Enter your prompt,
;; 5) Press C-c C-c to send your prompt to OpenAI API,
;; 6) Finally, the response will asynchronously show up in a dedicated
;; buffer upon receipt.

(require 'json)
(require 'markdown-mode)

;;; Code:

(defvar chatgpt-api-key nil "OpenAI API key.")

(defvar chatgpt-dir
(expand-file-name (concat user-emacs-directory "chatgpt-requests/"))
"Request directory.

This directory path must be absolute and end with a forward slash
like this:

\"/home/tony/chatgpt-emacs/requests/\"")

(defun chatgpt-json-encode (object)
"Return a JSON representation of OBJECT as a string."
(let ((json-encoding-pretty-print t))

(json-encode object)))

(defun chatgpt-json-read ()
"Parse and return the JSON object following point."
(let ((json-key-type 'keyword)

(json-object-type 'plist)
(json-array-type 'vector))

(json-read)))

(defun chatgpt-command (req-path)
"Return the curl command with REQ-PATH request data for OpenAI API call.

Also retrieve OpenAI API key from `~/.authinfo.gpg' (encrypted
with gpg) or `~/.authinfo' files looking for a line like this

97

machine openai password <openai-api-key>"
(when (null chatgpt-api-key)

(setq chatgpt-api-key
(auth-source-pick-first-password :host "openai")))

(format
(concat "curl https://api.openai.com/v1/chat/completions "

"-H 'Content-Type: application/json' "
"-H 'Authorization: Bearer %s' "
"-d @%s")

chatgpt-api-key req-path))

(defvar chatgpt-model "gpt-4o" "OpenAI model.")

(defun chatgpt-request (prompt)
"Return an OpenAI request with PROMPT."
`(:model ,chatgpt-model

:messages ,(vector `(:role "user" :content ,prompt))))

(defun chatgpt-callback (prompt response req-dir)
"Append PROMPT and RESPONSE to the prompt buffer with a link to REQ-DIR.

Also display the response buffer."
(let ((buff (get-buffer-create "*chatgpt[requests]*")))

(with-current-buffer buff
(markdown-mode)
(goto-char (point-max))
(insert "# Request\n\n"

"<!-- [](" req-dir ") -->\n\n"
"## Prompt\n\n" prompt "\n\n"
"## Response\n\n" response "\n\n"))

(with-selected-window (display-buffer buff nil)
(goto-char (point-max))
(re-search-backward "^## Response")
(recenter-top-bottom 0))

(message "Response received from OpenAI.")))

(defvar chatgpt-timer nil "Timer for waiting widget in mode line.")

(defun chatgpt-mode-line-waiting (action)

98

"Start or stop a waiting widget in mode line.

Accepted values for ACTION includes `start' and `stop'."
(pcase action

('start
(setq chatgpt-timer

(run-with-timer
0 0.66
(let ((idx 0))

(lambda ()
(progn

(setq global-mode-string
`(:eval ,(concat "| ChatGPT." (make-string (mod idx 3) ?.))))

(force-mode-line-update 'all)
(cl-incf idx)))))))

('stop
(cancel-timer chatgpt-timer)
(setq chatgpt-timer nil)
(setq global-mode-string nil)
(force-mode-line-update 'all))))

(defun chatgpt-send-request (prompt)
"Send the request with PROMPT to OpenAI."
(let* ((req (chatgpt-request prompt))

(temporary-file-directory chatgpt-dir)
(req-dir (file-name-as-directory (make-temp-file nil t)))
(req-path (concat req-dir "request.json"))
(timestamp-path (format "%stimestamp-%s" req-dir (time-to-seconds)))
(command (chatgpt-command req-path)))

(message "chatgpt: %s" req-dir)
(write-region (chatgpt-json-encode req) nil req-path)
(write-region "" nil timestamp-path)
(chatgpt-push req-dir)
(chatgpt-mode-line-waiting 'start)
(make-process
:name "chatgpt"
:buffer (generate-new-buffer-name "chatgpt")
:command (list "sh" "-c" command)
:sentinel
(lambda (process event)

99

(chatgpt-mode-line-waiting 'stop)
(if (not (string= event "finished\n"))

(let ((err `(:type "process-error" :error (:event ,event)))
(err-path (concat req-dir "error.json")))

(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

(let* ((resp (with-current-buffer (process-buffer process)
(goto-char (point-min))
(chatgpt-json-read))))

(if-let ((api-error (plist-get resp :error)))
(let ((err `(:type "api-error" :error ,api-error))

(err-path (concat req-dir "error.json")))
(write-region (chatgpt-json-encode err) nil err-path)
(error "%S" err))

(let ((response (map-nested-elt resp [:choices 0 :message :content]))
(resp-path (concat req-dir "response.json")))

(write-region (chatgpt-json-encode resp) nil resp-path)
(chatgpt-callback prompt response req-dir))))

(kill-buffer (process-buffer process)))))))

(defun chatgpt-send ()
"Send the current prompt to OpenAI."
(interactive)
(chatgpt-send-request (buffer-string))
(erase-buffer)
(when (> (length (window-list)) 1)

(delete-window))
(message "Request sent to OpenAI."))

(defun chatgpt-timestamp (file)
"Return the timestamp number associated with timestamp FILE."
(string-to-number (nth 1 (split-string file "timestamp-"))))

(defun chatgpt-requests ()
"Return a sorted list of the requests in `chatgpt-dir'.

The most recent requests are listed first."
(let ((files (directory-files-recursively chatgpt-dir "timestamp.*")))

(mapcar (lambda (f) (string-trim-right f "timestamp.*"))
(seq-sort

100

(lambda (f1 f2) (> (chatgpt-timestamp f1) (chatgpt-timestamp f2)))
files))))

(defvar chatgpt-request-dir nil
"Hold request directory of the current prompt.")

(defvar chatgpt-history (make-ring 0)
"Ring of the request directories.")

(defun chatgpt-history-set ()
"Set `chatgpt-history' with request in `chatgpt-dir'."
(when (file-exists-p chatgpt-dir)

(setq chatgpt-history (ring-convert-sequence-to-ring (chatgpt-requests)))))

(defun chatgpt-push (req-dir)
"Insert REQ-DIR into `chatgpt-history' ring."
(setq chatgpt-request-dir nil)
(ring-insert+extend chatgpt-history req-dir t))

(defun chatgpt-prompt (direction)
"Replace current buffer content with DIRECTION prompt."
(interactive)
(if (ring-empty-p chatgpt-history)

(message "`chatgpt-history' empty. Send a request first.")
(let* ((req-dir (if (null chatgpt-request-dir)

(ring-ref chatgpt-history 0)
(if (eq direction 'previous)

(ring-next chatgpt-history chatgpt-request-dir)
(ring-previous chatgpt-history chatgpt-request-dir))))

(req (with-temp-buffer
(insert-file-contents (concat req-dir "request.json"))
(chatgpt-json-read)))

(prompt (map-nested-elt req [:messages 0 :content])))
(setq chatgpt-request-dir req-dir)
(erase-buffer)
(save-excursion (insert prompt)))))

(defun chatgpt-previous ()
"Replace current buffer content with next prompt."
(interactive)

101

(chatgpt-prompt 'previous))

(defun chatgpt-next ()
"Replace current buffer content with next prompt."
(interactive)
(chatgpt-prompt 'next))

(defvar chatgpt-mode-map
(let ((map (make-sparse-keymap)))

(define-key map (kbd "M-p") 'chatgpt-previous)
(define-key map (kbd "M-n") 'chatgpt-next)
(define-key map (kbd "C-c C-c") 'chatgpt-send)
map)

"Keymap of `chatgpt-mode'.")

(define-derived-mode chatgpt-mode markdown-mode "ChatGPT"
"ChatGPT mode."
(setq mode-line-format

'(" "
mode-line-buffer-identification
" "
chatgpt-model
" "
mode-line-misc-info))

(make-directory chatgpt-dir t)
(chatgpt-history-set))

(defun chatgpt ()
"Display and Select the prompt buffer.

Once in that buffer you can enter your prompt and send it
to OpenAI with `chatgpt-send' command bound by default to `C-c C-c'.

Your OpenAI API key will be retrieved in from `~/.authinfo.gpg'
\(encrypted with gpg) or `~/.authinfo' files looking for a line
like this

machine openai password <openai-api-key>"
(interactive)
(let* ((buff-name "*chatgpt*")

102

(buff-p (get-buffer buff-name))
(buff (get-buffer-create buff-name)))

(select-window
(display-buffer-at-bottom
buff '(display-buffer-below-selected (window-height . 6))))

(when (not buff-p) (chatgpt-mode))))

(provide 'chatgpt)
;;; chatgpt.el ends here

103

	First Request to OpenAI Using the Chat Completion API
	Adding funds to Your credit balance on OpenAI Developer Platform
	Creating an API Key on OpenAI Developer Platform
	First Request to OpenAI Using the Chat Completion API

	Chat Completion Streaming API
	Curl Request Using a JSON File
	Chat Completion Streaming API
	Updating the Request for Streaming
	Observing Streaming Responses
	Response Breakdown

	Developer and System Messages
	Developer and System Messages Overview
	Understanding Developer and System Messages
	Modifying the Developer Instruction
	API Request and Response

	Replying in Spanish with More Constraints

	Assistant Messages
	Independent Requests
	Example Conversation
	Continuing the Dialogue
	Building Context
	Final Response
	Conclusion

	The Basics of make-process
	Executing Commands with make-process
	The Process Object
	Executing Commands with Pipes Using make-process
	Process Sentinel Overview
	Branching on the Event Types in the Process Sentinel
	Printing the Process Buffer Content in the Echo Area
	Redirecting Process Buffer Content to Another Buffer

	First Request To OpenAI From Emacs Lisp
	Review of The Last Lesson
	Renaming The Process Name and Process Buffers
	Killing The Process Buffers
	Sending our First OpenAI Request from Emacs Lisp
	Defining chatgpt-send Command in chatgpt.el File

	Refactoring chatgpt-send and introducing chatgpt-api-key
	Refactoring chatgpt-send with chatgpt-command
	Introducing chatgpt-api-key to hold OpenAI API Key
	Updated Code
	Testing with an Incorrect API Key

	Updating chatgpt-command Function Signature

	Making the Prompt Dynamic in Requests
	Writing a JSON Object to a File
	Writing the OpenAI Request to a File
	Updating chatgpt-send
	Entering the Prompt from a Buffer

	Formatting Requests and Responses in Markdown
	Parsing and Returning a JSON Object with json-read
	Accessing Elements in a Nested Structure with map-nested-elt
	Inserting the Assistant Response instead of the JSON Response
	Formatting with markdown-mode

	Saving Requests to Disk
	Refactoring chatgpt-send with chatgpt-request
	Refactoring chatgpt-send with chatgpt-callback
	Saving Requests
	Saving Responses
	Refactoring chatgpt-send with chatgpt-json-encode
	Adding Links to Request Directories

	The Prompt Buffer
	Displaying the Prompt Buffer with chatgpt
	Defining chatgpt-mode
	Introducing chatgpt-model Variable
	Mode Line of the Prompt Buffer
	Executing chatgpt-mode Once
	Creating chatgpt-dir in chatgpt-mode
	Defining chatgpt-mode-map keymap
	chatgpt.el

	Making the response buffer pop up upon receipt
	Refactoring chatgpt-send into chatgpt-send-request
	Deleting The Prompt Buffer window
	Ensuring the Response Buffer is Displayed
	Adding Notifications

	Handling API Errors
	Signaling API Errors
	Saving API Errors
	Signaling and Saving Process Errors
	chatgpt.el

	Timestamp Files
	Purpose of Timestamp Files
	Writing Timestamp Files
	Defining the chatgpt-timestamp Function
	Defining the chatgpt-requests Function

	Overview of the Ring Package
	Creating Rings and Inserting Elements
	Accessing Ring Elements

	Implementing Prompt History Feature
	Binding M-p and M-n in chatgpt-mode-map
	Defining chatgpt-history and chatgpt-push
	Implementing the chatgpt-previous Command
	Testing the chatgpt-previous Command

	Handling Empty chatgpt-history
	Initializing chatgpt-history from Disk
	Refactoring for Clean Code
	chatgpt.el

	The Waiting Widget
	Managing the API Key
	Redefining the API Key Variable
	Modifying the chatgpt-command Function
	Adding the API Key to ~/.authinfo File
	Restarting Emacs for Changes to Take Effect
	Testing the Setup

	chatgpt.el - Simple ChatGPT Emacs Integration
	Overview
	Key Features
	Get Started in Minutes
	chatgpt.el

